Merge pull request #741 from IlyaOvodov/Fix_detector_output

Output improvements for detector results:
pull/844/head
Alexey 7 years ago committed by GitHub
commit 0948df52b8
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 11
      src/box.h
  2. 2
      src/convolutional_layer.c
  3. 5
      src/darknet.c
  4. 10
      src/detector.c
  5. 105
      src/image.c
  6. 2
      src/image.h

@ -37,6 +37,13 @@ typedef struct detection {
int sort_class;
} detection;
typedef struct detection_with_class {
detection det;
// The most probable class id: the best class index in this->prob.
// Is filled temporary when processing results, otherwise not initialized
int best_class;
} detection_with_class;
box float_to_box(float *f);
float box_iou(box a, box b);
float box_rmse(box a, box b);
@ -48,4 +55,8 @@ YOLODLL_API void do_nms_obj(detection *dets, int total, int classes, float thres
box decode_box(box b, box anchor);
box encode_box(box b, box anchor);
// Creates array of detections with prob > thresh and fills best_class for them
// Return number of selected detections in *selected_detections_num
detection_with_class* get_actual_detections(detection *dets, int dets_num, float thresh, int* selected_detections_num);
#endif

@ -491,7 +491,7 @@ void resize_convolutional_layer(convolutional_layer *l, int w, int h)
size_t total_byte;
check_error(cudaMemGetInfo(&free_byte, &total_byte));
if (l->workspace_size > free_byte || l->workspace_size >= total_byte / 2) {
printf(" used slow CUDNN algo without Workspace! \n");
printf(" used slow CUDNN algo without Workspace! Need memory: %d, available: %d\n", l->workspace_size, (free_byte < total_byte/2) ? free_byte : total_byte/2);
cudnn_convolutional_setup(l, cudnn_smallest);
l->workspace_size = get_workspace_size(*l);
}

@ -18,7 +18,7 @@
#endif
extern void predict_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename, int top);
extern void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh);
extern void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, int ext_output);
extern void run_voxel(int argc, char **argv);
extern void run_yolo(int argc, char **argv);
extern void run_detector(int argc, char **argv);
@ -391,8 +391,9 @@ int main(int argc, char **argv)
run_detector(argc, argv);
} else if (0 == strcmp(argv[1], "detect")){
float thresh = find_float_arg(argc, argv, "-thresh", .24);
int ext_output = find_arg(argc, argv, "-ext_output");
char *filename = (argc > 4) ? argv[4]: 0;
test_detector("cfg/coco.data", argv[2], argv[3], filename, thresh);
test_detector("cfg/coco.data", argv[2], argv[3], filename, thresh, ext_output);
} else if (0 == strcmp(argv[1], "cifar")){
run_cifar(argc, argv);
} else if (0 == strcmp(argv[1], "go")){

@ -1041,7 +1041,8 @@ void calc_anchors(char *datacfg, int num_of_clusters, int width, int height, int
}
#endif // OPENCV
void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, float hier_thresh, int dont_show)
void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh,
float hier_thresh, int dont_show, int ext_output)
{
list *options = read_data_cfg(datacfg);
char *name_list = option_find_str(options, "names", "data/names.list");
@ -1093,7 +1094,7 @@ void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filenam
int nboxes = 0;
detection *dets = get_network_boxes(&net, im.w, im.h, thresh, hier_thresh, 0, 1, &nboxes, letterbox);
if (nms) do_nms_sort(dets, nboxes, l.classes, nms);
draw_detections_v3(im, dets, nboxes, thresh, names, alphabet, l.classes);
draw_detections_v3(im, dets, nboxes, thresh, names, alphabet, l.classes, ext_output);
free_detections(dets, nboxes);
save_image(im, "predictions");
if (!dont_show) {
@ -1145,6 +1146,9 @@ void run_detector(int argc, char **argv)
int num_of_clusters = find_int_arg(argc, argv, "-num_of_clusters", 5);
int width = find_int_arg(argc, argv, "-width", -1);
int height = find_int_arg(argc, argv, "-height", -1);
// extended output in test mode (output of rect bound coords)
// and for recall mode (extended output table-like format with results for best_class fit)
int ext_output = find_arg(argc, argv, "-ext_output");
if(argc < 4){
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
return;
@ -1181,7 +1185,7 @@ void run_detector(int argc, char **argv)
if(strlen(weights) > 0)
if (weights[strlen(weights) - 1] == 0x0d) weights[strlen(weights) - 1] = 0;
char *filename = (argc > 6) ? argv[6]: 0;
if(0==strcmp(argv[2], "test")) test_detector(datacfg, cfg, weights, filename, thresh, hier_thresh, dont_show);
if(0==strcmp(argv[2], "test")) test_detector(datacfg, cfg, weights, filename, thresh, hier_thresh, dont_show, ext_output);
else if(0==strcmp(argv[2], "train")) train_detector(datacfg, cfg, weights, gpus, ngpus, clear, dont_show);
else if(0==strcmp(argv[2], "valid")) validate_detector(datacfg, cfg, weights, outfile);
else if(0==strcmp(argv[2], "recall")) validate_detector_recall(datacfg, cfg, weights);

@ -230,27 +230,76 @@ image **load_alphabet()
return alphabets;
}
void draw_detections_v3(image im, detection *dets, int num, float thresh, char **names, image **alphabet, int classes)
{
int i, j;
for (i = 0; i < num; ++i) {
char labelstr[4096] = { 0 };
int class_id = -1;
for (j = 0; j < classes; ++j) {
if (dets[i].prob[j] > thresh) {
if (class_id < 0) {
strcat(labelstr, names[j]);
class_id = j;
}
else {
strcat(labelstr, ", ");
strcat(labelstr, names[j]);
}
printf("%s: %.0f%%\n", names[j], dets[i].prob[j] * 100);
// Creates array of detections with prob > thresh and fills best_class for them
detection_with_class* get_actual_detections(detection *dets, int dets_num, float thresh, int* selected_detections_num)
{
int selected_num = 0;
detection_with_class* result_arr = calloc(dets_num, sizeof(detection_with_class));
for (int i = 0; i < dets_num; ++i) {
int best_class = -1;
float best_class_prob = thresh;
for (int j = 0; j < dets[i].classes; ++j) {
if (dets[i].prob[j] > best_class_prob ) {
best_class = j;
best_class_prob = dets[i].prob[j];
}
}
if (class_id >= 0) {
if (best_class >= 0) {
result_arr[selected_num].det = dets[i];
result_arr[selected_num].best_class = best_class;
++selected_num;
}
}
if (selected_detections_num)
*selected_detections_num = selected_num;
return result_arr;
}
// compare to sort detection** by bbox.x
int compare_by_lefts(const void *a_ptr, const void *b_ptr) {
const detection_with_class* a = (detection_with_class*)a_ptr;
const detection_with_class* b = (detection_with_class*)b_ptr;
const float delta = (a->det.bbox.x - a->det.bbox.w/2) - (b->det.bbox.x - b->det.bbox.w/2);
return delta < 0 ? -1 : delta > 0 ? 1 : 0;
}
// compare to sort detection** by best_class probability
int compare_by_probs(const void *a_ptr, const void *b_ptr) {
const detection_with_class* a = (detection_with_class*)a_ptr;
const detection_with_class* b = (detection_with_class*)b_ptr;
float delta = a->det.prob[a->best_class] - b->det.prob[b->best_class];
return delta < 0 ? -1 : delta > 0 ? 1 : 0;
}
void draw_detections_v3(image im, detection *dets, int num, float thresh, char **names, image **alphabet, int classes, int ext_output)
{
int selected_detections_num;
detection_with_class* selected_detections = get_actual_detections(dets, num, thresh, &selected_detections_num);
// text output
qsort(selected_detections, selected_detections_num, sizeof(*selected_detections), compare_by_lefts);
for (int i = 0; i < selected_detections_num; ++i) {
const int best_class = selected_detections[i].best_class;
printf("%s: %.0f%%", names[best_class], selected_detections[i].det.prob[best_class] * 100);
if (ext_output)
printf("\t(left: %.0f\ttop: %.0f\tw: %0.f\th: %0.f)\n",
(selected_detections[i].det.bbox.x - selected_detections[i].det.bbox.w / 2)*im.w,
(selected_detections[i].det.bbox.y - selected_detections[i].det.bbox.h / 2)*im.h,
selected_detections[i].det.bbox.w*im.w, selected_detections[i].det.bbox.h*im.h);
else
printf("\n");
for (int j = 0; j < classes; ++j) {
if (selected_detections[i].det.prob[j] > thresh && j != best_class) {
printf("%s: %.0f%%\n", names[j], selected_detections[i].det.prob[j] * 100);
}
}
}
// image output
qsort(selected_detections, selected_detections_num, sizeof(*selected_detections), compare_by_probs);
for (int i = 0; i < selected_detections_num; ++i) {
int width = im.h * .006;
if (width < 1)
width = 1;
@ -262,8 +311,8 @@ void draw_detections_v3(image im, detection *dets, int num, float thresh, char *
}
*/
//printf("%d %s: %.0f%%\n", i, names[class_id], prob*100);
int offset = class_id * 123457 % classes;
//printf("%d %s: %.0f%%\n", i, names[selected_detections[i].best_class], prob*100);
int offset = selected_detections[i].best_class * 123457 % classes;
float red = get_color(2, offset, classes);
float green = get_color(1, offset, classes);
float blue = get_color(0, offset, classes);
@ -274,7 +323,7 @@ void draw_detections_v3(image im, detection *dets, int num, float thresh, char *
rgb[0] = red;
rgb[1] = green;
rgb[2] = blue;
box b = dets[i].bbox;
box b = selected_detections[i].det.bbox;
//printf("%f %f %f %f\n", b.x, b.y, b.w, b.h);
int left = (b.x - b.w / 2.)*im.w;
@ -295,12 +344,20 @@ void draw_detections_v3(image im, detection *dets, int num, float thresh, char *
draw_box_width(im, left, top, right, bot, width, red, green, blue);
if (alphabet) {
char labelstr[4096] = { 0 };
strcat(labelstr, names[selected_detections[i].best_class]);
for (int j = 0; j < classes; ++j) {
if (selected_detections[i].det.prob[j] > thresh && j != selected_detections[i].best_class) {
strcat(labelstr, ", ");
strcat(labelstr, names[j]);
}
}
image label = get_label_v3(alphabet, labelstr, (im.h*.03));
draw_label(im, top + width, left, label, rgb);
free_image(label);
}
if (dets[i].mask) {
image mask = float_to_image(14, 14, 1, dets[i].mask);
if (selected_detections[i].det.mask) {
image mask = float_to_image(14, 14, 1, selected_detections[i].det.mask);
image resized_mask = resize_image(mask, b.w*im.w, b.h*im.h);
image tmask = threshold_image(resized_mask, .5);
embed_image(tmask, im, left, top);
@ -308,8 +365,8 @@ void draw_detections_v3(image im, detection *dets, int num, float thresh, char *
free_image(resized_mask);
free_image(tmask);
}
}
}
free(selected_detections);
}
void draw_detections(image im, int num, float thresh, box *boxes, float **probs, char **names, image **alphabet, int classes)

@ -23,7 +23,7 @@ void draw_bbox(image a, box bbox, int w, float r, float g, float b);
void draw_label(image a, int r, int c, image label, const float *rgb);
void write_label(image a, int r, int c, image *characters, char *string, float *rgb);
void draw_detections(image im, int num, float thresh, box *boxes, float **probs, char **names, image **labels, int classes);
void draw_detections_v3(image im, detection *dets, int num, float thresh, char **names, image **alphabet, int classes);
void draw_detections_v3(image im, detection *dets, int num, float thresh, char **names, image **alphabet, int classes, int ext_output);
image image_distance(image a, image b);
void scale_image(image m, float s);
image crop_image(image im, int dx, int dy, int w, int h);

Loading…
Cancel
Save