|
|
|
@ -230,27 +230,76 @@ image **load_alphabet() |
|
|
|
|
return alphabets; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void draw_detections_v3(image im, detection *dets, int num, float thresh, char **names, image **alphabet, int classes) |
|
|
|
|
{ |
|
|
|
|
int i, j; |
|
|
|
|
|
|
|
|
|
for (i = 0; i < num; ++i) { |
|
|
|
|
char labelstr[4096] = { 0 }; |
|
|
|
|
int class_id = -1; |
|
|
|
|
for (j = 0; j < classes; ++j) { |
|
|
|
|
if (dets[i].prob[j] > thresh) { |
|
|
|
|
if (class_id < 0) { |
|
|
|
|
strcat(labelstr, names[j]); |
|
|
|
|
class_id = j; |
|
|
|
|
} |
|
|
|
|
else { |
|
|
|
|
strcat(labelstr, ", "); |
|
|
|
|
strcat(labelstr, names[j]); |
|
|
|
|
} |
|
|
|
|
printf("%s: %.0f%%\n", names[j], dets[i].prob[j] * 100); |
|
|
|
|
|
|
|
|
|
// Creates array of detections with prob > thresh and fills best_class for them
|
|
|
|
|
detection_with_class* get_actual_detections(detection *dets, int dets_num, float thresh, int* selected_detections_num) |
|
|
|
|
{ |
|
|
|
|
int selected_num = 0; |
|
|
|
|
detection_with_class* result_arr = calloc(dets_num, sizeof(detection_with_class)); |
|
|
|
|
for (int i = 0; i < dets_num; ++i) { |
|
|
|
|
int best_class = -1; |
|
|
|
|
float best_class_prob = thresh; |
|
|
|
|
for (int j = 0; j < dets[i].classes; ++j) { |
|
|
|
|
if (dets[i].prob[j] > best_class_prob ) { |
|
|
|
|
best_class = j; |
|
|
|
|
best_class_prob = dets[i].prob[j]; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
if (class_id >= 0) { |
|
|
|
|
if (best_class >= 0) { |
|
|
|
|
result_arr[selected_num].det = dets[i]; |
|
|
|
|
result_arr[selected_num].best_class = best_class; |
|
|
|
|
++selected_num; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
if (selected_detections_num) |
|
|
|
|
*selected_detections_num = selected_num; |
|
|
|
|
return result_arr; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// compare to sort detection** by bbox.x
|
|
|
|
|
int compare_by_lefts(const void *a_ptr, const void *b_ptr) { |
|
|
|
|
const detection_with_class* a = (detection_with_class*)a_ptr; |
|
|
|
|
const detection_with_class* b = (detection_with_class*)b_ptr; |
|
|
|
|
const float delta = (a->det.bbox.x - a->det.bbox.w/2) - (b->det.bbox.x - b->det.bbox.w/2); |
|
|
|
|
return delta < 0 ? -1 : delta > 0 ? 1 : 0; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// compare to sort detection** by best_class probability
|
|
|
|
|
int compare_by_probs(const void *a_ptr, const void *b_ptr) { |
|
|
|
|
const detection_with_class* a = (detection_with_class*)a_ptr; |
|
|
|
|
const detection_with_class* b = (detection_with_class*)b_ptr; |
|
|
|
|
float delta = a->det.prob[a->best_class] - b->det.prob[b->best_class]; |
|
|
|
|
return delta < 0 ? -1 : delta > 0 ? 1 : 0; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void draw_detections_v3(image im, detection *dets, int num, float thresh, char **names, image **alphabet, int classes, int ext_output) |
|
|
|
|
{ |
|
|
|
|
int selected_detections_num; |
|
|
|
|
detection_with_class* selected_detections = get_actual_detections(dets, num, thresh, &selected_detections_num); |
|
|
|
|
|
|
|
|
|
// text output
|
|
|
|
|
qsort(selected_detections, selected_detections_num, sizeof(*selected_detections), compare_by_lefts); |
|
|
|
|
for (int i = 0; i < selected_detections_num; ++i) { |
|
|
|
|
const int best_class = selected_detections[i].best_class; |
|
|
|
|
printf("%s: %.0f%%", names[best_class], selected_detections[i].det.prob[best_class] * 100); |
|
|
|
|
if (ext_output) |
|
|
|
|
printf("\t(left: %.0f\ttop: %.0f\tw: %0.f\th: %0.f)\n", |
|
|
|
|
(selected_detections[i].det.bbox.x - selected_detections[i].det.bbox.w / 2)*im.w, |
|
|
|
|
(selected_detections[i].det.bbox.y - selected_detections[i].det.bbox.h / 2)*im.h, |
|
|
|
|
selected_detections[i].det.bbox.w*im.w, selected_detections[i].det.bbox.h*im.h); |
|
|
|
|
else |
|
|
|
|
printf("\n"); |
|
|
|
|
for (int j = 0; j < classes; ++j) { |
|
|
|
|
if (selected_detections[i].det.prob[j] > thresh && j != best_class) { |
|
|
|
|
printf("%s: %.0f%%\n", names[j], selected_detections[i].det.prob[j] * 100); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// image output
|
|
|
|
|
qsort(selected_detections, selected_detections_num, sizeof(*selected_detections), compare_by_probs); |
|
|
|
|
for (int i = 0; i < selected_detections_num; ++i) { |
|
|
|
|
int width = im.h * .006; |
|
|
|
|
if (width < 1) |
|
|
|
|
width = 1; |
|
|
|
@ -262,8 +311,8 @@ void draw_detections_v3(image im, detection *dets, int num, float thresh, char * |
|
|
|
|
} |
|
|
|
|
*/ |
|
|
|
|
|
|
|
|
|
//printf("%d %s: %.0f%%\n", i, names[class_id], prob*100);
|
|
|
|
|
int offset = class_id * 123457 % classes; |
|
|
|
|
//printf("%d %s: %.0f%%\n", i, names[selected_detections[i].best_class], prob*100);
|
|
|
|
|
int offset = selected_detections[i].best_class * 123457 % classes; |
|
|
|
|
float red = get_color(2, offset, classes); |
|
|
|
|
float green = get_color(1, offset, classes); |
|
|
|
|
float blue = get_color(0, offset, classes); |
|
|
|
@ -274,7 +323,7 @@ void draw_detections_v3(image im, detection *dets, int num, float thresh, char * |
|
|
|
|
rgb[0] = red; |
|
|
|
|
rgb[1] = green; |
|
|
|
|
rgb[2] = blue; |
|
|
|
|
box b = dets[i].bbox; |
|
|
|
|
box b = selected_detections[i].det.bbox; |
|
|
|
|
//printf("%f %f %f %f\n", b.x, b.y, b.w, b.h);
|
|
|
|
|
|
|
|
|
|
int left = (b.x - b.w / 2.)*im.w; |
|
|
|
@ -295,12 +344,20 @@ void draw_detections_v3(image im, detection *dets, int num, float thresh, char * |
|
|
|
|
|
|
|
|
|
draw_box_width(im, left, top, right, bot, width, red, green, blue); |
|
|
|
|
if (alphabet) { |
|
|
|
|
char labelstr[4096] = { 0 }; |
|
|
|
|
strcat(labelstr, names[selected_detections[i].best_class]); |
|
|
|
|
for (int j = 0; j < classes; ++j) { |
|
|
|
|
if (selected_detections[i].det.prob[j] > thresh && j != selected_detections[i].best_class) { |
|
|
|
|
strcat(labelstr, ", "); |
|
|
|
|
strcat(labelstr, names[j]); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
image label = get_label_v3(alphabet, labelstr, (im.h*.03)); |
|
|
|
|
draw_label(im, top + width, left, label, rgb); |
|
|
|
|
free_image(label); |
|
|
|
|
} |
|
|
|
|
if (dets[i].mask) { |
|
|
|
|
image mask = float_to_image(14, 14, 1, dets[i].mask); |
|
|
|
|
if (selected_detections[i].det.mask) { |
|
|
|
|
image mask = float_to_image(14, 14, 1, selected_detections[i].det.mask); |
|
|
|
|
image resized_mask = resize_image(mask, b.w*im.w, b.h*im.h); |
|
|
|
|
image tmask = threshold_image(resized_mask, .5); |
|
|
|
|
embed_image(tmask, im, left, top); |
|
|
|
@ -308,8 +365,8 @@ void draw_detections_v3(image im, detection *dets, int num, float thresh, char * |
|
|
|
|
free_image(resized_mask); |
|
|
|
|
free_image(tmask); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
free(selected_detections); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void draw_detections(image im, int num, float thresh, box *boxes, float **probs, char **names, image **alphabet, int classes) |
|
|
|
|