|
|
|
@ -209,13 +209,12 @@ void train_imagenet_distributed(char *address) |
|
|
|
|
void train_imagenet(char *cfgfile) |
|
|
|
|
{ |
|
|
|
|
float avg_loss = 1; |
|
|
|
|
//network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg");
|
|
|
|
|
srand(time(0)); |
|
|
|
|
network net = parse_network_cfg(cfgfile); |
|
|
|
|
//test_learn_bias(*(convolutional_layer *)net.layers[1]);
|
|
|
|
|
//set_learning_network(&net, net.learning_rate, 0, net.decay);
|
|
|
|
|
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
|
|
|
|
int imgs = 3072; |
|
|
|
|
int imgs = 1024; |
|
|
|
|
int i = net.seen/imgs; |
|
|
|
|
char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list"); |
|
|
|
|
list *plist = get_paths("/data/imagenet/cls.train.list"); |
|
|
|
@ -231,9 +230,6 @@ void train_imagenet(char *cfgfile) |
|
|
|
|
time=clock(); |
|
|
|
|
pthread_join(load_thread, 0); |
|
|
|
|
train = buffer; |
|
|
|
|
//normalize_data_rows(train);
|
|
|
|
|
//translate_data_rows(train, -128);
|
|
|
|
|
//scale_data_rows(train, 1./128);
|
|
|
|
|
load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 256, 256, &buffer); |
|
|
|
|
printf("Loaded: %lf seconds\n", sec(clock()-time)); |
|
|
|
|
time=clock(); |
|
|
|
@ -244,7 +240,7 @@ void train_imagenet(char *cfgfile) |
|
|
|
|
free_data(train); |
|
|
|
|
if(i%100==0){ |
|
|
|
|
char buff[256]; |
|
|
|
|
sprintf(buff, "/home/pjreddie/imagenet_backup/alexnet_%d.cfg", i); |
|
|
|
|
sprintf(buff, "/home/pjreddie/imagenet_backup/vgg_%d.cfg", i); |
|
|
|
|
save_network(net, buff); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
@ -347,10 +343,28 @@ void test_init(char *cfgfile) |
|
|
|
|
} |
|
|
|
|
free_image(im); |
|
|
|
|
} |
|
|
|
|
void test_dog(char *cfgfile) |
|
|
|
|
{ |
|
|
|
|
image im = load_image_color("data/dog.jpg", 224, 224); |
|
|
|
|
translate_image(im, -128); |
|
|
|
|
print_image(im); |
|
|
|
|
float *X = im.data; |
|
|
|
|
network net = parse_network_cfg(cfgfile); |
|
|
|
|
set_batch_network(&net, 1); |
|
|
|
|
float *predictions = network_predict(net, X); |
|
|
|
|
image crop = get_network_image_layer(net, 0); |
|
|
|
|
//show_image(crop, "cropped");
|
|
|
|
|
// print_image(crop);
|
|
|
|
|
//show_image(im, "orig");
|
|
|
|
|
float * inter = get_network_output(net); |
|
|
|
|
pm(1000, 1, inter); |
|
|
|
|
//cvWaitKey(0);
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void test_imagenet() |
|
|
|
|
void test_imagenet(char *cfgfile) |
|
|
|
|
{ |
|
|
|
|
network net = parse_network_cfg("cfg/imagenet_test.cfg"); |
|
|
|
|
network net = parse_network_cfg(cfgfile); |
|
|
|
|
set_batch_network(&net, 1); |
|
|
|
|
//imgs=1;
|
|
|
|
|
srand(2222222); |
|
|
|
|
int i = 0; |
|
|
|
@ -362,7 +376,8 @@ void test_imagenet() |
|
|
|
|
fgets(filename, 256, stdin); |
|
|
|
|
strtok(filename, "\n"); |
|
|
|
|
image im = load_image_color(filename, 256, 256); |
|
|
|
|
z_normalize_image(im); |
|
|
|
|
translate_image(im, -128); |
|
|
|
|
//scale_image(im, 1/128.);
|
|
|
|
|
printf("%d %d %d\n", im.h, im.w, im.c); |
|
|
|
|
float *X = im.data; |
|
|
|
|
time=clock(); |
|
|
|
@ -472,28 +487,28 @@ void train_nist(char *cfgfile) |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
void train_nist_distributed(char *address) |
|
|
|
|
{ |
|
|
|
|
srand(time(0)); |
|
|
|
|
network net = parse_network_cfg("cfg/nist.client"); |
|
|
|
|
data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10); |
|
|
|
|
//data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
|
|
|
|
|
normalize_data_rows(train); |
|
|
|
|
//normalize_data_rows(test);
|
|
|
|
|
int count = 0; |
|
|
|
|
int iters = 50000/net.batch; |
|
|
|
|
iters = 1000/net.batch + 1; |
|
|
|
|
while(++count <= 2000){ |
|
|
|
|
clock_t start = clock(), end; |
|
|
|
|
float loss = train_network_sgd(net, train, iters); |
|
|
|
|
client_update(net, address); |
|
|
|
|
end = clock(); |
|
|
|
|
//float test_acc = network_accuracy_gpu(net, test);
|
|
|
|
|
//float test_acc = 0;
|
|
|
|
|
printf("%d: Loss: %f, Time: %lf seconds\n", count, loss, (float)(end-start)/CLOCKS_PER_SEC); |
|
|
|
|
} |
|
|
|
|
void train_nist_distributed(char *address) |
|
|
|
|
{ |
|
|
|
|
srand(time(0)); |
|
|
|
|
network net = parse_network_cfg("cfg/nist.client"); |
|
|
|
|
data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10); |
|
|
|
|
//data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
|
|
|
|
|
normalize_data_rows(train); |
|
|
|
|
//normalize_data_rows(test);
|
|
|
|
|
int count = 0; |
|
|
|
|
int iters = 50000/net.batch; |
|
|
|
|
iters = 1000/net.batch + 1; |
|
|
|
|
while(++count <= 2000){ |
|
|
|
|
clock_t start = clock(), end; |
|
|
|
|
float loss = train_network_sgd(net, train, iters); |
|
|
|
|
client_update(net, address); |
|
|
|
|
end = clock(); |
|
|
|
|
//float test_acc = network_accuracy_gpu(net, test);
|
|
|
|
|
//float test_acc = 0;
|
|
|
|
|
printf("%d: Loss: %f, Time: %lf seconds\n", count, loss, (float)(end-start)/CLOCKS_PER_SEC); |
|
|
|
|
} |
|
|
|
|
*/ |
|
|
|
|
} |
|
|
|
|
*/ |
|
|
|
|
|
|
|
|
|
void test_ensemble() |
|
|
|
|
{ |
|
|
|
@ -535,7 +550,7 @@ void test_ensemble() |
|
|
|
|
void visualize_cat() |
|
|
|
|
{ |
|
|
|
|
network net = parse_network_cfg("cfg/voc_imagenet.cfg"); |
|
|
|
|
image im = load_image("data/cat.png", 0, 0); |
|
|
|
|
image im = load_image_color("data/cat.png", 0, 0); |
|
|
|
|
printf("Processing %dx%d image\n", im.h, im.w); |
|
|
|
|
resize_network(net, im.h, im.w, im.c); |
|
|
|
|
forward_network(net, im.data, 0, 0); |
|
|
|
@ -544,6 +559,7 @@ void visualize_cat() |
|
|
|
|
cvWaitKey(0); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#ifdef GPU |
|
|
|
|
void test_convolutional_layer() |
|
|
|
|
{ |
|
|
|
|
network net = parse_network_cfg("cfg/nist_conv.cfg"); |
|
|
|
@ -561,6 +577,7 @@ void test_convolutional_layer() |
|
|
|
|
bias_output_gpu(layer); |
|
|
|
|
cuda_compare(layer.output_gpu, layer.output, out_size, "biased output"); |
|
|
|
|
} |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
void test_correct_nist() |
|
|
|
|
{ |
|
|
|
@ -586,7 +603,7 @@ void test_correct_nist() |
|
|
|
|
gpu_index = -1; |
|
|
|
|
count = 0; |
|
|
|
|
srand(222222); |
|
|
|
|
net = parse_network_cfg("cfg/nist_conv.cfg"); |
|
|
|
|
net = parse_network_cfg("cfg/nist_conv.cfg"); |
|
|
|
|
while(++count <= 5){ |
|
|
|
|
clock_t start = clock(), end; |
|
|
|
|
float loss = train_network_sgd(net, train, iters); |
|
|
|
@ -641,27 +658,27 @@ void test_correct_alexnet() |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
void run_server() |
|
|
|
|
{ |
|
|
|
|
srand(time(0)); |
|
|
|
|
network net = parse_network_cfg("cfg/net.cfg"); |
|
|
|
|
set_batch_network(&net, 1); |
|
|
|
|
server_update(net); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void test_client() |
|
|
|
|
{ |
|
|
|
|
network net = parse_network_cfg("cfg/alexnet.client"); |
|
|
|
|
clock_t time=clock(); |
|
|
|
|
client_update(net, "localhost"); |
|
|
|
|
printf("1\n"); |
|
|
|
|
client_update(net, "localhost"); |
|
|
|
|
printf("2\n"); |
|
|
|
|
client_update(net, "localhost"); |
|
|
|
|
printf("3\n"); |
|
|
|
|
printf("Transfered: %lf seconds\n", sec(clock()-time)); |
|
|
|
|
} |
|
|
|
|
*/ |
|
|
|
|
void run_server() |
|
|
|
|
{ |
|
|
|
|
srand(time(0)); |
|
|
|
|
network net = parse_network_cfg("cfg/net.cfg"); |
|
|
|
|
set_batch_network(&net, 1); |
|
|
|
|
server_update(net); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void test_client() |
|
|
|
|
{ |
|
|
|
|
network net = parse_network_cfg("cfg/alexnet.client"); |
|
|
|
|
clock_t time=clock(); |
|
|
|
|
client_update(net, "localhost"); |
|
|
|
|
printf("1\n"); |
|
|
|
|
client_update(net, "localhost"); |
|
|
|
|
printf("2\n"); |
|
|
|
|
client_update(net, "localhost"); |
|
|
|
|
printf("3\n"); |
|
|
|
|
printf("Transfered: %lf seconds\n", sec(clock()-time)); |
|
|
|
|
} |
|
|
|
|
*/ |
|
|
|
|
|
|
|
|
|
void del_arg(int argc, char **argv, int index) |
|
|
|
|
{ |
|
|
|
@ -713,7 +730,6 @@ int main(int argc, char **argv) |
|
|
|
|
|
|
|
|
|
if(0==strcmp(argv[1], "test_correct")) test_correct_alexnet(); |
|
|
|
|
else if(0==strcmp(argv[1], "test_correct_nist")) test_correct_nist(); |
|
|
|
|
else if(0==strcmp(argv[1], "test")) test_imagenet(); |
|
|
|
|
//else if(0==strcmp(argv[1], "server")) run_server();
|
|
|
|
|
|
|
|
|
|
#ifdef GPU |
|
|
|
@ -725,6 +741,8 @@ int main(int argc, char **argv) |
|
|
|
|
return 0; |
|
|
|
|
} |
|
|
|
|
else if(0==strcmp(argv[1], "detection")) train_detection_net(argv[2]); |
|
|
|
|
else if(0==strcmp(argv[1], "test")) test_imagenet(argv[2]); |
|
|
|
|
else if(0==strcmp(argv[1], "dog")) test_dog(argv[2]); |
|
|
|
|
else if(0==strcmp(argv[1], "ctrain")) train_cifar10(argv[2]); |
|
|
|
|
else if(0==strcmp(argv[1], "nist")) train_nist(argv[2]); |
|
|
|
|
else if(0==strcmp(argv[1], "ctest")) test_cifar10(argv[2]); |
|
|
|
|