|
|
|
@ -23,6 +23,130 @@ int is_maxpool(section *s); |
|
|
|
|
int is_softmax(section *s); |
|
|
|
|
list *read_cfg(char *filename); |
|
|
|
|
|
|
|
|
|
void free_section(section *s) |
|
|
|
|
{ |
|
|
|
|
free(s->type); |
|
|
|
|
node *n = s->options->front; |
|
|
|
|
while(n){ |
|
|
|
|
kvp *pair = (kvp *)n->val; |
|
|
|
|
free(pair->key); |
|
|
|
|
free(pair); |
|
|
|
|
node *next = n->next; |
|
|
|
|
free(n); |
|
|
|
|
n = next; |
|
|
|
|
} |
|
|
|
|
free(s->options); |
|
|
|
|
free(s); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
convolutional_layer *parse_convolutional(list *options, network net, int count) |
|
|
|
|
{ |
|
|
|
|
int i; |
|
|
|
|
int h,w,c; |
|
|
|
|
int n = option_find_int(options, "filters",1); |
|
|
|
|
int size = option_find_int(options, "size",1); |
|
|
|
|
int stride = option_find_int(options, "stride",1); |
|
|
|
|
char *activation_s = option_find_str(options, "activation", "sigmoid"); |
|
|
|
|
ACTIVATION activation = get_activation(activation_s); |
|
|
|
|
if(count == 0){ |
|
|
|
|
h = option_find_int(options, "height",1); |
|
|
|
|
w = option_find_int(options, "width",1); |
|
|
|
|
c = option_find_int(options, "channels",1); |
|
|
|
|
}else{ |
|
|
|
|
image m = get_network_image_layer(net, count-1); |
|
|
|
|
h = m.h; |
|
|
|
|
w = m.w; |
|
|
|
|
c = m.c; |
|
|
|
|
if(h == 0) error("Layer before convolutional layer must output image."); |
|
|
|
|
} |
|
|
|
|
convolutional_layer *layer = make_convolutional_layer(h,w,c,n,size,stride, activation); |
|
|
|
|
char *data = option_find_str(options, "data", 0); |
|
|
|
|
if(data){ |
|
|
|
|
char *curr = data; |
|
|
|
|
char *next = data; |
|
|
|
|
for(i = 0; i < n; ++i){ |
|
|
|
|
while(*++next !='\0' && *next != ','); |
|
|
|
|
*next = '\0'; |
|
|
|
|
sscanf(curr, "%g", &layer->biases[i]); |
|
|
|
|
curr = next+1; |
|
|
|
|
} |
|
|
|
|
for(i = 0; i < c*n*size*size; ++i){ |
|
|
|
|
while(*++next !='\0' && *next != ','); |
|
|
|
|
*next = '\0'; |
|
|
|
|
sscanf(curr, "%g", &layer->filters[i]); |
|
|
|
|
curr = next+1; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
option_unused(options); |
|
|
|
|
return layer; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
connected_layer *parse_connected(list *options, network net, int count) |
|
|
|
|
{ |
|
|
|
|
int i; |
|
|
|
|
int input; |
|
|
|
|
int output = option_find_int(options, "output",1); |
|
|
|
|
char *activation_s = option_find_str(options, "activation", "sigmoid"); |
|
|
|
|
ACTIVATION activation = get_activation(activation_s); |
|
|
|
|
if(count == 0){ |
|
|
|
|
input = option_find_int(options, "input",1); |
|
|
|
|
}else{ |
|
|
|
|
input = get_network_output_size_layer(net, count-1); |
|
|
|
|
} |
|
|
|
|
connected_layer *layer = make_connected_layer(input, output, activation); |
|
|
|
|
char *data = option_find_str(options, "data", 0); |
|
|
|
|
if(data){ |
|
|
|
|
char *curr = data; |
|
|
|
|
char *next = data; |
|
|
|
|
for(i = 0; i < output; ++i){ |
|
|
|
|
while(*++next !='\0' && *next != ','); |
|
|
|
|
*next = '\0'; |
|
|
|
|
sscanf(curr, "%g", &layer->biases[i]); |
|
|
|
|
curr = next+1; |
|
|
|
|
} |
|
|
|
|
for(i = 0; i < input*output; ++i){ |
|
|
|
|
while(*++next !='\0' && *next != ','); |
|
|
|
|
*next = '\0'; |
|
|
|
|
sscanf(curr, "%g", &layer->weights[i]); |
|
|
|
|
curr = next+1; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
option_unused(options); |
|
|
|
|
return layer; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
softmax_layer *parse_softmax(list *options, network net, int count) |
|
|
|
|
{ |
|
|
|
|
int input; |
|
|
|
|
if(count == 0){ |
|
|
|
|
input = option_find_int(options, "input",1); |
|
|
|
|
}else{ |
|
|
|
|
input = get_network_output_size_layer(net, count-1); |
|
|
|
|
} |
|
|
|
|
softmax_layer *layer = make_softmax_layer(input); |
|
|
|
|
option_unused(options); |
|
|
|
|
return layer; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
maxpool_layer *parse_maxpool(list *options, network net, int count) |
|
|
|
|
{ |
|
|
|
|
int h,w,c; |
|
|
|
|
int stride = option_find_int(options, "stride",1); |
|
|
|
|
if(count == 0){ |
|
|
|
|
h = option_find_int(options, "height",1); |
|
|
|
|
w = option_find_int(options, "width",1); |
|
|
|
|
c = option_find_int(options, "channels",1); |
|
|
|
|
}else{ |
|
|
|
|
image m = get_network_image_layer(net, count-1); |
|
|
|
|
h = m.h; |
|
|
|
|
w = m.w; |
|
|
|
|
c = m.c; |
|
|
|
|
if(h == 0) error("Layer before convolutional layer must output image."); |
|
|
|
|
} |
|
|
|
|
maxpool_layer *layer = make_maxpool_layer(h,w,c,stride); |
|
|
|
|
option_unused(options); |
|
|
|
|
return layer; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
network parse_network_cfg(char *filename) |
|
|
|
|
{ |
|
|
|
@ -35,78 +159,29 @@ network parse_network_cfg(char *filename) |
|
|
|
|
section *s = (section *)n->val; |
|
|
|
|
list *options = s->options; |
|
|
|
|
if(is_convolutional(s)){ |
|
|
|
|
int h,w,c; |
|
|
|
|
int n = option_find_int(options, "filters",1); |
|
|
|
|
int size = option_find_int(options, "size",1); |
|
|
|
|
int stride = option_find_int(options, "stride",1); |
|
|
|
|
char *activation_s = option_find_str(options, "activation", "sigmoid"); |
|
|
|
|
ACTIVATION activation = get_activation(activation_s); |
|
|
|
|
if(count == 0){ |
|
|
|
|
h = option_find_int(options, "height",1); |
|
|
|
|
w = option_find_int(options, "width",1); |
|
|
|
|
c = option_find_int(options, "channels",1); |
|
|
|
|
}else{ |
|
|
|
|
image m = get_network_image_layer(net, count-1); |
|
|
|
|
h = m.h; |
|
|
|
|
w = m.w; |
|
|
|
|
c = m.c; |
|
|
|
|
if(h == 0) error("Layer before convolutional layer must output image."); |
|
|
|
|
} |
|
|
|
|
convolutional_layer *layer = make_convolutional_layer(h,w,c,n,size,stride, activation); |
|
|
|
|
convolutional_layer *layer = parse_convolutional(options, net, count); |
|
|
|
|
net.types[count] = CONVOLUTIONAL; |
|
|
|
|
net.layers[count] = layer; |
|
|
|
|
option_unused(options); |
|
|
|
|
} |
|
|
|
|
else if(is_connected(s)){ |
|
|
|
|
int input; |
|
|
|
|
int output = option_find_int(options, "output",1); |
|
|
|
|
char *activation_s = option_find_str(options, "activation", "sigmoid"); |
|
|
|
|
ACTIVATION activation = get_activation(activation_s); |
|
|
|
|
if(count == 0){ |
|
|
|
|
input = option_find_int(options, "input",1); |
|
|
|
|
}else{ |
|
|
|
|
input = get_network_output_size_layer(net, count-1); |
|
|
|
|
} |
|
|
|
|
connected_layer *layer = make_connected_layer(input, output, activation); |
|
|
|
|
}else if(is_connected(s)){ |
|
|
|
|
connected_layer *layer = parse_connected(options, net, count); |
|
|
|
|
net.types[count] = CONNECTED; |
|
|
|
|
net.layers[count] = layer; |
|
|
|
|
option_unused(options); |
|
|
|
|
}else if(is_softmax(s)){ |
|
|
|
|
int input; |
|
|
|
|
if(count == 0){ |
|
|
|
|
input = option_find_int(options, "input",1); |
|
|
|
|
}else{ |
|
|
|
|
input = get_network_output_size_layer(net, count-1); |
|
|
|
|
} |
|
|
|
|
softmax_layer *layer = make_softmax_layer(input); |
|
|
|
|
softmax_layer *layer = parse_softmax(options, net, count); |
|
|
|
|
net.types[count] = SOFTMAX; |
|
|
|
|
net.layers[count] = layer; |
|
|
|
|
option_unused(options); |
|
|
|
|
}else if(is_maxpool(s)){ |
|
|
|
|
int h,w,c; |
|
|
|
|
int stride = option_find_int(options, "stride",1); |
|
|
|
|
//char *activation_s = option_find_str(options, "activation", "sigmoid");
|
|
|
|
|
if(count == 0){ |
|
|
|
|
h = option_find_int(options, "height",1); |
|
|
|
|
w = option_find_int(options, "width",1); |
|
|
|
|
c = option_find_int(options, "channels",1); |
|
|
|
|
}else{ |
|
|
|
|
image m = get_network_image_layer(net, count-1); |
|
|
|
|
h = m.h; |
|
|
|
|
w = m.w; |
|
|
|
|
c = m.c; |
|
|
|
|
if(h == 0) error("Layer before convolutional layer must output image."); |
|
|
|
|
} |
|
|
|
|
maxpool_layer *layer = make_maxpool_layer(h,w,c,stride); |
|
|
|
|
maxpool_layer *layer = parse_maxpool(options, net, count); |
|
|
|
|
net.types[count] = MAXPOOL; |
|
|
|
|
net.layers[count] = layer; |
|
|
|
|
option_unused(options); |
|
|
|
|
}else{ |
|
|
|
|
fprintf(stderr, "Type not recognized: %s\n", s->type); |
|
|
|
|
} |
|
|
|
|
free_section(s); |
|
|
|
|
++count; |
|
|
|
|
n = n->next; |
|
|
|
|
}
|
|
|
|
|
free_list(sections); |
|
|
|
|
net.outputs = get_network_output_size(net); |
|
|
|
|
net.output = get_network_output(net); |
|
|
|
|
return net; |
|
|
|
|