mirror of https://github.com/AlexeyAB/darknet.git
parent
26cddc6f93
commit
2313a8eb54
8 changed files with 887 additions and 870 deletions
@ -0,0 +1,120 @@ |
||||
#include "network.h" |
||||
#include "utils.h" |
||||
#include "parser.h" |
||||
|
||||
|
||||
void train_captcha(char *cfgfile, char *weightfile) |
||||
{ |
||||
float avg_loss = -1; |
||||
srand(time(0)); |
||||
char *base = basecfg(cfgfile); |
||||
printf("%s\n", base); |
||||
network net = parse_network_cfg(cfgfile); |
||||
if(weightfile){ |
||||
load_weights(&net, weightfile); |
||||
} |
||||
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
||||
int imgs = 1024; |
||||
int i = net.seen/imgs; |
||||
list *plist = get_paths("/data/captcha/train.list"); |
||||
char **paths = (char **)list_to_array(plist); |
||||
printf("%d\n", plist->size); |
||||
clock_t time; |
||||
while(1){ |
||||
++i; |
||||
time=clock(); |
||||
data train = load_data_captcha(paths, imgs, plist->size, 10, 60, 200); |
||||
translate_data_rows(train, -128); |
||||
scale_data_rows(train, 1./128); |
||||
printf("Loaded: %lf seconds\n", sec(clock()-time)); |
||||
time=clock(); |
||||
float loss = train_network(net, train); |
||||
net.seen += imgs; |
||||
if(avg_loss == -1) avg_loss = loss; |
||||
avg_loss = avg_loss*.9 + loss*.1; |
||||
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), net.seen); |
||||
free_data(train); |
||||
if(i%100==0){ |
||||
char buff[256]; |
||||
sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i); |
||||
save_weights(net, buff); |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
void validate_captcha(char *cfgfile, char *weightfile) |
||||
{ |
||||
srand(time(0)); |
||||
char *base = basecfg(cfgfile); |
||||
printf("%s\n", base); |
||||
network net = parse_network_cfg(cfgfile); |
||||
if(weightfile){ |
||||
load_weights(&net, weightfile); |
||||
} |
||||
int imgs = 1000; |
||||
int numchars = 37; |
||||
list *plist = get_paths("/data/captcha/valid.base"); |
||||
char **paths = (char **)list_to_array(plist); |
||||
data valid = load_data_captcha(paths, imgs, 0, 10, 60, 200); |
||||
translate_data_rows(valid, -128); |
||||
scale_data_rows(valid, 1./128); |
||||
matrix pred = network_predict_data(net, valid); |
||||
int i, k; |
||||
int correct = 0; |
||||
int total = 0; |
||||
int accuracy = 0; |
||||
for(i = 0; i < imgs; ++i){ |
||||
int allcorrect = 1; |
||||
for(k = 0; k < 10; ++k){ |
||||
char truth = int_to_alphanum(max_index(valid.y.vals[i]+k*numchars, numchars)); |
||||
char prediction = int_to_alphanum(max_index(pred.vals[i]+k*numchars, numchars)); |
||||
if (truth != prediction) allcorrect=0; |
||||
if (truth != '.' && truth == prediction) ++correct; |
||||
if (truth != '.' || truth != prediction) ++total; |
||||
} |
||||
accuracy += allcorrect; |
||||
} |
||||
printf("Word Accuracy: %f, Char Accuracy %f\n", (float)accuracy/imgs, (float)correct/total); |
||||
free_data(valid); |
||||
} |
||||
|
||||
void test_captcha(char *cfgfile, char *weightfile) |
||||
{ |
||||
setbuf(stdout, NULL); |
||||
srand(time(0)); |
||||
//char *base = basecfg(cfgfile);
|
||||
//printf("%s\n", base);
|
||||
network net = parse_network_cfg(cfgfile); |
||||
set_batch_network(&net, 1); |
||||
if(weightfile){ |
||||
load_weights(&net, weightfile); |
||||
} |
||||
char filename[256]; |
||||
while(1){ |
||||
//printf("Enter filename: ");
|
||||
fgets(filename, 256, stdin); |
||||
strtok(filename, "\n"); |
||||
image im = load_image_color(filename, 60, 200); |
||||
translate_image(im, -128); |
||||
scale_image(im, 1/128.); |
||||
float *X = im.data; |
||||
float *predictions = network_predict(net, X); |
||||
print_letters(predictions, 10); |
||||
free_image(im); |
||||
} |
||||
} |
||||
void run_captcha(int argc, char **argv) |
||||
{ |
||||
if(argc < 4){ |
||||
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); |
||||
return; |
||||
} |
||||
|
||||
char *cfg = argv[3]; |
||||
char *weights = (argc > 4) ? argv[4] : 0; |
||||
if(0==strcmp(argv[2], "test")) test_captcha(cfg, weights); |
||||
else if(0==strcmp(argv[2], "train")) train_captcha(cfg, weights); |
||||
else if(0==strcmp(argv[2], "valid")) validate_captcha(cfg, weights); |
||||
} |
||||
|
@ -0,0 +1,200 @@ |
||||
#include "network.h" |
||||
#include "utils.h" |
||||
#include "parser.h" |
||||
|
||||
|
||||
char *class_names[] = {"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"}; |
||||
#define AMNT 3 |
||||
void draw_detection(image im, float *box, int side) |
||||
{ |
||||
int classes = 20; |
||||
int elems = 4+classes; |
||||
int j; |
||||
int r, c; |
||||
|
||||
for(r = 0; r < side; ++r){ |
||||
for(c = 0; c < side; ++c){ |
||||
j = (r*side + c) * elems; |
||||
//printf("%d\n", j);
|
||||
//printf("Prob: %f\n", box[j]);
|
||||
int class = max_index(box+j, classes); |
||||
if(box[j+class] > .02 || 1){ |
||||
//int z;
|
||||
//for(z = 0; z < classes; ++z) printf("%f %s\n", box[j+z], class_names[z]);
|
||||
printf("%f %s\n", box[j+class], class_names[class]); |
||||
float red = get_color(0,class,classes); |
||||
float green = get_color(1,class,classes); |
||||
float blue = get_color(2,class,classes); |
||||
|
||||
j += classes; |
||||
int d = im.w/side; |
||||
int y = r*d+box[j]*d; |
||||
int x = c*d+box[j+1]*d; |
||||
int h = box[j+2]*im.h; |
||||
int w = box[j+3]*im.w; |
||||
draw_box(im, x-w/2, y-h/2, x+w/2, y+h/2,red,green,blue); |
||||
} |
||||
} |
||||
} |
||||
//printf("Done\n");
|
||||
show_image(im, "box"); |
||||
cvWaitKey(0); |
||||
} |
||||
|
||||
void train_detection(char *cfgfile, char *weightfile) |
||||
{ |
||||
char *base = basecfg(cfgfile); |
||||
printf("%s\n", base); |
||||
float avg_loss = 1; |
||||
network net = parse_network_cfg(cfgfile); |
||||
if(weightfile){ |
||||
load_weights(&net, weightfile); |
||||
} |
||||
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
||||
int imgs = 128; |
||||
srand(time(0)); |
||||
//srand(23410);
|
||||
int i = net.seen/imgs; |
||||
list *plist = get_paths("/home/pjreddie/data/voc/train.txt"); |
||||
char **paths = (char **)list_to_array(plist); |
||||
printf("%d\n", plist->size); |
||||
data train, buffer; |
||||
int im_dim = 512; |
||||
int jitter = 64; |
||||
int classes = 21; |
||||
pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, im_dim, im_dim, 7, 7, jitter, &buffer); |
||||
clock_t time; |
||||
while(1){ |
||||
i += 1; |
||||
time=clock(); |
||||
pthread_join(load_thread, 0); |
||||
train = buffer; |
||||
load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, im_dim, im_dim, 7, 7, jitter, &buffer); |
||||
|
||||
/*
|
||||
image im = float_to_image(im_dim - jitter, im_dim-jitter, 3, train.X.vals[0]); |
||||
draw_detection(im, train.y.vals[0], 7); |
||||
show_image(im, "truth"); |
||||
cvWaitKey(0); |
||||
*/ |
||||
|
||||
printf("Loaded: %lf seconds\n", sec(clock()-time)); |
||||
time=clock(); |
||||
float loss = train_network(net, train); |
||||
net.seen += imgs; |
||||
avg_loss = avg_loss*.9 + loss*.1; |
||||
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs); |
||||
if(i%100==0){ |
||||
char buff[256]; |
||||
sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i); |
||||
save_weights(net, buff); |
||||
} |
||||
free_data(train); |
||||
} |
||||
} |
||||
|
||||
void validate_detection(char *cfgfile, char *weightfile) |
||||
{ |
||||
network net = parse_network_cfg(cfgfile); |
||||
if(weightfile){ |
||||
load_weights(&net, weightfile); |
||||
} |
||||
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
||||
srand(time(0)); |
||||
|
||||
list *plist = get_paths("/home/pjreddie/data/voc/val.txt"); |
||||
char **paths = (char **)list_to_array(plist); |
||||
int num_output = 1225; |
||||
int im_size = 448; |
||||
int classes = 21; |
||||
|
||||
int m = plist->size; |
||||
int i = 0; |
||||
int splits = 100; |
||||
int num = (i+1)*m/splits - i*m/splits; |
||||
|
||||
fprintf(stderr, "%d\n", m); |
||||
data val, buffer; |
||||
pthread_t load_thread = load_data_thread(paths, num, 0, 0, num_output, im_size, im_size, &buffer); |
||||
clock_t time; |
||||
for(i = 1; i <= splits; ++i){ |
||||
time=clock(); |
||||
pthread_join(load_thread, 0); |
||||
val = buffer; |
||||
|
||||
num = (i+1)*m/splits - i*m/splits; |
||||
char **part = paths+(i*m/splits); |
||||
if(i != splits) load_thread = load_data_thread(part, num, 0, 0, num_output, im_size, im_size, &buffer); |
||||
|
||||
fprintf(stderr, "%d: Loaded: %lf seconds\n", i, sec(clock()-time)); |
||||
matrix pred = network_predict_data(net, val); |
||||
int j, k, class; |
||||
for(j = 0; j < pred.rows; ++j){ |
||||
for(k = 0; k < pred.cols; k += classes+4){ |
||||
|
||||
/*
|
||||
int z; |
||||
for(z = 0; z < 25; ++z) printf("%f, ", pred.vals[j][k+z]); |
||||
printf("\n"); |
||||
*/ |
||||
|
||||
//if (pred.vals[j][k] > .001){
|
||||
for(class = 0; class < classes-1; ++class){ |
||||
int index = (k)/(classes+4);
|
||||
int r = index/7; |
||||
int c = index%7; |
||||
float y = (r + pred.vals[j][k+0+classes])/7.; |
||||
float x = (c + pred.vals[j][k+1+classes])/7.; |
||||
float h = pred.vals[j][k+2+classes]; |
||||
float w = pred.vals[j][k+3+classes]; |
||||
printf("%d %d %f %f %f %f %f\n", (i-1)*m/splits + j, class, pred.vals[j][k+class], y, x, h, w); |
||||
} |
||||
//}
|
||||
} |
||||
} |
||||
|
||||
time=clock(); |
||||
free_data(val); |
||||
} |
||||
} |
||||
|
||||
void test_detection(char *cfgfile, char *weightfile) |
||||
{ |
||||
network net = parse_network_cfg(cfgfile); |
||||
if(weightfile){ |
||||
load_weights(&net, weightfile); |
||||
} |
||||
int im_size = 448; |
||||
set_batch_network(&net, 1); |
||||
srand(2222222); |
||||
clock_t time; |
||||
char filename[256]; |
||||
while(1){ |
||||
fgets(filename, 256, stdin); |
||||
strtok(filename, "\n"); |
||||
image im = load_image_color(filename, im_size, im_size); |
||||
translate_image(im, -128); |
||||
scale_image(im, 1/128.); |
||||
printf("%d %d %d\n", im.h, im.w, im.c); |
||||
float *X = im.data; |
||||
time=clock(); |
||||
float *predictions = network_predict(net, X); |
||||
printf("%s: Predicted in %f seconds.\n", filename, sec(clock()-time)); |
||||
draw_detection(im, predictions, 7); |
||||
free_image(im); |
||||
} |
||||
} |
||||
|
||||
void run_detection(int argc, char **argv) |
||||
{ |
||||
if(argc < 4){ |
||||
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); |
||||
return; |
||||
} |
||||
|
||||
char *cfg = argv[3]; |
||||
char *weights = (argc > 4) ? argv[4] : 0; |
||||
if(0==strcmp(argv[2], "test")) test_detection(cfg, weights); |
||||
else if(0==strcmp(argv[2], "train")) train_detection(cfg, weights); |
||||
else if(0==strcmp(argv[2], "valid")) validate_detection(cfg, weights); |
||||
} |
@ -0,0 +1,180 @@ |
||||
#include "network.h" |
||||
#include "utils.h" |
||||
#include "parser.h" |
||||
|
||||
void train_imagenet(char *cfgfile, char *weightfile) |
||||
{ |
||||
float avg_loss = -1; |
||||
srand(time(0)); |
||||
char *base = basecfg(cfgfile); |
||||
printf("%s\n", base); |
||||
network net = parse_network_cfg(cfgfile); |
||||
if(weightfile){ |
||||
load_weights(&net, weightfile); |
||||
} |
||||
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
||||
int imgs = 1024; |
||||
int i = net.seen/imgs; |
||||
char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list"); |
||||
list *plist = get_paths("/data/imagenet/cls.train.list"); |
||||
char **paths = (char **)list_to_array(plist); |
||||
printf("%d\n", plist->size); |
||||
clock_t time; |
||||
pthread_t load_thread; |
||||
data train; |
||||
data buffer; |
||||
load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 256, 256, &buffer); |
||||
while(1){ |
||||
++i; |
||||
time=clock(); |
||||
pthread_join(load_thread, 0); |
||||
train = buffer; |
||||
load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 256, 256, &buffer); |
||||
printf("Loaded: %lf seconds\n", sec(clock()-time)); |
||||
time=clock(); |
||||
float loss = train_network(net, train); |
||||
net.seen += imgs; |
||||
if(avg_loss == -1) avg_loss = loss; |
||||
avg_loss = avg_loss*.9 + loss*.1; |
||||
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), net.seen); |
||||
free_data(train); |
||||
if(i%100==0){ |
||||
char buff[256]; |
||||
sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i); |
||||
save_weights(net, buff); |
||||
} |
||||
} |
||||
} |
||||
|
||||
void validate_imagenet(char *filename, char *weightfile) |
||||
{ |
||||
int i = 0; |
||||
network net = parse_network_cfg(filename); |
||||
if(weightfile){ |
||||
load_weights(&net, weightfile); |
||||
} |
||||
srand(time(0)); |
||||
|
||||
char **labels = get_labels("/home/pjreddie/data/imagenet/cls.val.labels.list"); |
||||
|
||||
list *plist = get_paths("/data/imagenet/cls.val.list"); |
||||
char **paths = (char **)list_to_array(plist); |
||||
int m = plist->size; |
||||
free_list(plist); |
||||
|
||||
clock_t time; |
||||
float avg_acc = 0; |
||||
float avg_top5 = 0; |
||||
int splits = 50; |
||||
int num = (i+1)*m/splits - i*m/splits; |
||||
|
||||
data val, buffer; |
||||
pthread_t load_thread = load_data_thread(paths, num, 0, labels, 1000, 256, 256, &buffer); |
||||
for(i = 1; i <= splits; ++i){ |
||||
time=clock(); |
||||
|
||||
pthread_join(load_thread, 0); |
||||
val = buffer; |
||||
|
||||
num = (i+1)*m/splits - i*m/splits; |
||||
char **part = paths+(i*m/splits); |
||||
if(i != splits) load_thread = load_data_thread(part, num, 0, labels, 1000, 256, 256, &buffer); |
||||
printf("Loaded: %d images in %lf seconds\n", val.X.rows, sec(clock()-time)); |
||||
|
||||
time=clock(); |
||||
float *acc = network_accuracies(net, val); |
||||
avg_acc += acc[0]; |
||||
avg_top5 += acc[1]; |
||||
printf("%d: top1: %f, top5: %f, %lf seconds, %d images\n", i, avg_acc/i, avg_top5/i, sec(clock()-time), val.X.rows); |
||||
free_data(val); |
||||
} |
||||
} |
||||
|
||||
void test_imagenet(char *cfgfile, char *weightfile) |
||||
{ |
||||
network net = parse_network_cfg(cfgfile); |
||||
if(weightfile){ |
||||
load_weights(&net, weightfile); |
||||
} |
||||
set_batch_network(&net, 1); |
||||
//imgs=1;
|
||||
srand(2222222); |
||||
int i = 0; |
||||
char **names = get_labels("cfg/shortnames.txt"); |
||||
clock_t time; |
||||
char filename[256]; |
||||
int indexes[10]; |
||||
while(1){ |
||||
fgets(filename, 256, stdin); |
||||
strtok(filename, "\n"); |
||||
image im = load_image_color(filename, 256, 256); |
||||
translate_image(im, -128); |
||||
scale_image(im, 1/128.); |
||||
printf("%d %d %d\n", im.h, im.w, im.c); |
||||
float *X = im.data; |
||||
time=clock(); |
||||
float *predictions = network_predict(net, X); |
||||
top_predictions(net, 10, indexes); |
||||
printf("%s: Predicted in %f seconds.\n", filename, sec(clock()-time)); |
||||
for(i = 0; i < 10; ++i){ |
||||
int index = indexes[i]; |
||||
printf("%s: %f\n", names[index], predictions[index]); |
||||
} |
||||
free_image(im); |
||||
} |
||||
} |
||||
|
||||
void run_imagenet(int argc, char **argv) |
||||
{ |
||||
if(argc < 4){ |
||||
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); |
||||
return; |
||||
} |
||||
|
||||
char *cfg = argv[3]; |
||||
char *weights = (argc > 4) ? argv[4] : 0; |
||||
if(0==strcmp(argv[2], "test")) test_imagenet(cfg, weights); |
||||
else if(0==strcmp(argv[2], "train")) train_imagenet(cfg, weights); |
||||
else if(0==strcmp(argv[2], "valid")) validate_imagenet(cfg, weights); |
||||
} |
||||
|
||||
/*
|
||||
void train_imagenet_distributed(char *address) |
||||
{ |
||||
float avg_loss = 1; |
||||
srand(time(0)); |
||||
network net = parse_network_cfg("cfg/net.cfg"); |
||||
set_learning_network(&net, 0, 1, 0); |
||||
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
||||
int imgs = net.batch; |
||||
int i = 0; |
||||
char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list"); |
||||
list *plist = get_paths("/data/imagenet/cls.train.list"); |
||||
char **paths = (char **)list_to_array(plist); |
||||
printf("%d\n", plist->size); |
||||
clock_t time; |
||||
data train, buffer; |
||||
pthread_t load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 224, 224, &buffer); |
||||
while(1){ |
||||
i += 1; |
||||
|
||||
time=clock(); |
||||
client_update(net, address); |
||||
printf("Updated: %lf seconds\n", sec(clock()-time)); |
||||
|
||||
time=clock(); |
||||
pthread_join(load_thread, 0); |
||||
train = buffer; |
||||
normalize_data_rows(train); |
||||
load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 224, 224, &buffer); |
||||
printf("Loaded: %lf seconds\n", sec(clock()-time)); |
||||
time=clock(); |
||||
|
||||
float loss = train_network(net, train); |
||||
avg_loss = avg_loss*.9 + loss*.1; |
||||
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs); |
||||
free_data(train); |
||||
} |
||||
} |
||||
*/ |
||||
|
@ -0,0 +1,356 @@ |
||||
|
||||
void test_load() |
||||
{ |
||||
image dog = load_image("dog.jpg", 300, 400); |
||||
show_image(dog, "Test Load"); |
||||
show_image_layers(dog, "Test Load"); |
||||
} |
||||
|
||||
void test_parser() |
||||
{ |
||||
network net = parse_network_cfg("cfg/trained_imagenet.cfg"); |
||||
save_network(net, "cfg/trained_imagenet_smaller.cfg"); |
||||
} |
||||
|
||||
void test_init(char *cfgfile) |
||||
{ |
||||
gpu_index = -1; |
||||
network net = parse_network_cfg(cfgfile); |
||||
set_batch_network(&net, 1); |
||||
srand(2222222); |
||||
int i = 0; |
||||
char *filename = "data/test.jpg"; |
||||
|
||||
image im = load_image_color(filename, 256, 256); |
||||
//z_normalize_image(im);
|
||||
translate_image(im, -128); |
||||
scale_image(im, 1/128.); |
||||
float *X = im.data; |
||||
forward_network(net, X, 0, 1); |
||||
for(i = 0; i < net.n; ++i){ |
||||
if(net.types[i] == CONVOLUTIONAL){ |
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
||||
image output = get_convolutional_image(layer); |
||||
int size = output.h*output.w*output.c; |
||||
float v = variance_array(layer.output, size); |
||||
float m = mean_array(layer.output, size); |
||||
printf("%d: Convolutional, mean: %f, variance %f\n", i, m, v); |
||||
} |
||||
else if(net.types[i] == CONNECTED){ |
||||
connected_layer layer = *(connected_layer *)net.layers[i]; |
||||
int size = layer.outputs; |
||||
float v = variance_array(layer.output, size); |
||||
float m = mean_array(layer.output, size); |
||||
printf("%d: Connected, mean: %f, variance %f\n", i, m, v); |
||||
} |
||||
} |
||||
free_image(im); |
||||
} |
||||
void test_dog(char *cfgfile) |
||||
{ |
||||
image im = load_image_color("data/dog.jpg", 256, 256); |
||||
translate_image(im, -128); |
||||
print_image(im); |
||||
float *X = im.data; |
||||
network net = parse_network_cfg(cfgfile); |
||||
set_batch_network(&net, 1); |
||||
network_predict(net, X); |
||||
image crop = get_network_image_layer(net, 0); |
||||
show_image(crop, "cropped"); |
||||
print_image(crop); |
||||
show_image(im, "orig"); |
||||
float * inter = get_network_output(net); |
||||
pm(1000, 1, inter); |
||||
cvWaitKey(0); |
||||
} |
||||
|
||||
void test_voc_segment(char *cfgfile, char *weightfile) |
||||
{ |
||||
network net = parse_network_cfg(cfgfile); |
||||
if(weightfile){ |
||||
load_weights(&net, weightfile); |
||||
} |
||||
set_batch_network(&net, 1); |
||||
while(1){ |
||||
char filename[256]; |
||||
fgets(filename, 256, stdin); |
||||
strtok(filename, "\n"); |
||||
image im = load_image_color(filename, 500, 500); |
||||
//resize_network(net, im.h, im.w, im.c);
|
||||
translate_image(im, -128); |
||||
scale_image(im, 1/128.); |
||||
//float *predictions = network_predict(net, im.data);
|
||||
network_predict(net, im.data); |
||||
free_image(im); |
||||
image output = get_network_image_layer(net, net.n-2); |
||||
show_image(output, "Segment Output"); |
||||
cvWaitKey(0); |
||||
} |
||||
} |
||||
void test_visualize(char *filename) |
||||
{ |
||||
network net = parse_network_cfg(filename); |
||||
visualize_network(net); |
||||
cvWaitKey(0); |
||||
} |
||||
|
||||
void test_cifar10(char *cfgfile) |
||||
{ |
||||
network net = parse_network_cfg(cfgfile); |
||||
data test = load_cifar10_data("data/cifar10/test_batch.bin"); |
||||
clock_t start = clock(), end; |
||||
float test_acc = network_accuracy_multi(net, test, 10); |
||||
end = clock(); |
||||
printf("%f in %f Sec\n", test_acc, sec(end-start)); |
||||
//visualize_network(net);
|
||||
//cvWaitKey(0);
|
||||
} |
||||
|
||||
void train_cifar10(char *cfgfile) |
||||
{ |
||||
srand(555555); |
||||
srand(time(0)); |
||||
network net = parse_network_cfg(cfgfile); |
||||
data test = load_cifar10_data("data/cifar10/test_batch.bin"); |
||||
int count = 0; |
||||
int iters = 50000/net.batch; |
||||
data train = load_all_cifar10(); |
||||
while(++count <= 10000){ |
||||
clock_t time = clock(); |
||||
float loss = train_network_sgd(net, train, iters); |
||||
|
||||
if(count%10 == 0){ |
||||
float test_acc = network_accuracy(net, test); |
||||
printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds\n", count, loss, test_acc,sec(clock()-time)); |
||||
char buff[256]; |
||||
sprintf(buff, "/home/pjreddie/imagenet_backup/cifar10_%d.cfg", count); |
||||
save_network(net, buff); |
||||
}else{ |
||||
printf("%d: Loss: %f, Time: %lf seconds\n", count, loss, sec(clock()-time)); |
||||
} |
||||
|
||||
} |
||||
free_data(train); |
||||
} |
||||
|
||||
void compare_nist(char *p1,char *p2) |
||||
{ |
||||
srand(222222); |
||||
network n1 = parse_network_cfg(p1); |
||||
network n2 = parse_network_cfg(p2); |
||||
data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10); |
||||
normalize_data_rows(test); |
||||
compare_networks(n1, n2, test); |
||||
} |
||||
|
||||
void test_nist(char *path) |
||||
{ |
||||
srand(222222); |
||||
network net = parse_network_cfg(path); |
||||
data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10); |
||||
normalize_data_rows(test); |
||||
clock_t start = clock(), end; |
||||
float test_acc = network_accuracy(net, test); |
||||
end = clock(); |
||||
printf("Accuracy: %f, Time: %lf seconds\n", test_acc,(float)(end-start)/CLOCKS_PER_SEC); |
||||
} |
||||
|
||||
void train_nist(char *cfgfile) |
||||
{ |
||||
srand(222222); |
||||
// srand(time(0));
|
||||
data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10); |
||||
data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10); |
||||
network net = parse_network_cfg(cfgfile); |
||||
int count = 0; |
||||
int iters = 6000/net.batch + 1; |
||||
while(++count <= 100){ |
||||
clock_t start = clock(), end; |
||||
normalize_data_rows(train); |
||||
normalize_data_rows(test); |
||||
float loss = train_network_sgd(net, train, iters); |
||||
float test_acc = 0; |
||||
if(count%1 == 0) test_acc = network_accuracy(net, test); |
||||
end = clock(); |
||||
printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC); |
||||
} |
||||
free_data(train); |
||||
free_data(test); |
||||
char buff[256]; |
||||
sprintf(buff, "%s.trained", cfgfile); |
||||
save_network(net, buff); |
||||
} |
||||
|
||||
/*
|
||||
void train_nist_distributed(char *address) |
||||
{ |
||||
srand(time(0)); |
||||
network net = parse_network_cfg("cfg/nist.client"); |
||||
data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10); |
||||
//data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
|
||||
normalize_data_rows(train); |
||||
//normalize_data_rows(test);
|
||||
int count = 0; |
||||
int iters = 50000/net.batch; |
||||
iters = 1000/net.batch + 1; |
||||
while(++count <= 2000){ |
||||
clock_t start = clock(), end; |
||||
float loss = train_network_sgd(net, train, iters); |
||||
client_update(net, address); |
||||
end = clock(); |
||||
//float test_acc = network_accuracy_gpu(net, test);
|
||||
//float test_acc = 0;
|
||||
printf("%d: Loss: %f, Time: %lf seconds\n", count, loss, (float)(end-start)/CLOCKS_PER_SEC); |
||||
} |
||||
} |
||||
*/ |
||||
|
||||
void test_ensemble() |
||||
{ |
||||
int i; |
||||
srand(888888); |
||||
data d = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10); |
||||
normalize_data_rows(d); |
||||
data test = load_categorical_data_csv("mnist/mnist_test.csv", 0,10); |
||||
normalize_data_rows(test); |
||||
data train = d; |
||||
// data *split = split_data(d, 1, 10);
|
||||
// data train = split[0];
|
||||
// data test = split[1];
|
||||
matrix prediction = make_matrix(test.y.rows, test.y.cols); |
||||
int n = 30; |
||||
for(i = 0; i < n; ++i){ |
||||
int count = 0; |
||||
float lr = .0005; |
||||
float momentum = .9; |
||||
float decay = .01; |
||||
network net = parse_network_cfg("nist.cfg"); |
||||
while(++count <= 15){ |
||||
float acc = train_network_sgd(net, train, train.X.rows); |
||||
printf("Training Accuracy: %lf Learning Rate: %f Momentum: %f Decay: %f\n", acc, lr, momentum, decay ); |
||||
lr /= 2;
|
||||
} |
||||
matrix partial = network_predict_data(net, test); |
||||
float acc = matrix_topk_accuracy(test.y, partial,1); |
||||
printf("Model Accuracy: %lf\n", acc); |
||||
matrix_add_matrix(partial, prediction); |
||||
acc = matrix_topk_accuracy(test.y, prediction,1); |
||||
printf("Current Ensemble Accuracy: %lf\n", acc); |
||||
free_matrix(partial); |
||||
} |
||||
float acc = matrix_topk_accuracy(test.y, prediction,1); |
||||
printf("Full Ensemble Accuracy: %lf\n", acc); |
||||
} |
||||
|
||||
void visualize_cat() |
||||
{ |
||||
network net = parse_network_cfg("cfg/voc_imagenet.cfg"); |
||||
image im = load_image_color("data/cat.png", 0, 0); |
||||
printf("Processing %dx%d image\n", im.h, im.w); |
||||
resize_network(net, im.h, im.w, im.c); |
||||
forward_network(net, im.data, 0, 0); |
||||
|
||||
visualize_network(net); |
||||
cvWaitKey(0); |
||||
} |
||||
|
||||
void test_correct_nist() |
||||
{ |
||||
network net = parse_network_cfg("cfg/nist_conv.cfg"); |
||||
srand(222222); |
||||
net = parse_network_cfg("cfg/nist_conv.cfg"); |
||||
data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10); |
||||
data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10); |
||||
normalize_data_rows(train); |
||||
normalize_data_rows(test); |
||||
int count = 0; |
||||
int iters = 1000/net.batch; |
||||
|
||||
while(++count <= 5){ |
||||
clock_t start = clock(), end; |
||||
float loss = train_network_sgd(net, train, iters); |
||||
end = clock(); |
||||
float test_acc = network_accuracy(net, test); |
||||
printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay); |
||||
} |
||||
save_network(net, "cfg/nist_gpu.cfg"); |
||||
|
||||
gpu_index = -1; |
||||
count = 0; |
||||
srand(222222); |
||||
net = parse_network_cfg("cfg/nist_conv.cfg"); |
||||
while(++count <= 5){ |
||||
clock_t start = clock(), end; |
||||
float loss = train_network_sgd(net, train, iters); |
||||
end = clock(); |
||||
float test_acc = network_accuracy(net, test); |
||||
printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay); |
||||
} |
||||
save_network(net, "cfg/nist_cpu.cfg"); |
||||
} |
||||
|
||||
void test_correct_alexnet() |
||||
{ |
||||
char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list"); |
||||
list *plist = get_paths("/data/imagenet/cls.train.list"); |
||||
char **paths = (char **)list_to_array(plist); |
||||
printf("%d\n", plist->size); |
||||
clock_t time; |
||||
int count = 0; |
||||
network net; |
||||
|
||||
srand(222222); |
||||
net = parse_network_cfg("cfg/net.cfg"); |
||||
int imgs = net.batch; |
||||
|
||||
count = 0; |
||||
while(++count <= 5){ |
||||
time=clock(); |
||||
data train = load_data(paths, imgs, plist->size, labels, 1000, 256, 256); |
||||
normalize_data_rows(train); |
||||
printf("Loaded: %lf seconds\n", sec(clock()-time)); |
||||
time=clock(); |
||||
float loss = train_network(net, train); |
||||
printf("%d: %f, %lf seconds, %d images\n", count, loss, sec(clock()-time), imgs*net.batch); |
||||
free_data(train); |
||||
} |
||||
|
||||
gpu_index = -1; |
||||
count = 0; |
||||
srand(222222); |
||||
net = parse_network_cfg("cfg/net.cfg"); |
||||
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
||||
while(++count <= 5){ |
||||
time=clock(); |
||||
data train = load_data(paths, imgs, plist->size, labels, 1000, 256,256); |
||||
normalize_data_rows(train); |
||||
printf("Loaded: %lf seconds\n", sec(clock()-time)); |
||||
time=clock(); |
||||
float loss = train_network(net, train); |
||||
printf("%d: %f, %lf seconds, %d images\n", count, loss, sec(clock()-time), imgs*net.batch); |
||||
free_data(train); |
||||
} |
||||
} |
||||
|
||||
/*
|
||||
void run_server() |
||||
{ |
||||
srand(time(0)); |
||||
network net = parse_network_cfg("cfg/net.cfg"); |
||||
set_batch_network(&net, 1); |
||||
server_update(net); |
||||
} |
||||
|
||||
void test_client() |
||||
{ |
||||
network net = parse_network_cfg("cfg/alexnet.client"); |
||||
clock_t time=clock(); |
||||
client_update(net, "localhost"); |
||||
printf("1\n"); |
||||
client_update(net, "localhost"); |
||||
printf("2\n"); |
||||
client_update(net, "localhost"); |
||||
printf("3\n"); |
||||
printf("Transfered: %lf seconds\n", sec(clock()-time)); |
||||
} |
||||
*/ |
Loading…
Reference in new issue