|
|
|
@ -38,7 +38,7 @@ void forward_network_gpu(network net, cl_mem input, cl_mem truth, int train) |
|
|
|
|
//printf("start\n");
|
|
|
|
|
int i; |
|
|
|
|
for(i = 0; i < net.n; ++i){ |
|
|
|
|
clock_t time = clock(); |
|
|
|
|
//clock_t time = clock();
|
|
|
|
|
if(net.types[i] == CONVOLUTIONAL){ |
|
|
|
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
|
|
|
|
forward_convolutional_layer_gpu(layer, input); |
|
|
|
@ -63,7 +63,7 @@ void forward_network_gpu(network net, cl_mem input, cl_mem truth, int train) |
|
|
|
|
forward_softmax_layer_gpu(layer, input); |
|
|
|
|
input = layer.output_cl; |
|
|
|
|
} |
|
|
|
|
printf("%d %f\n", i, sec(clock()-time)); |
|
|
|
|
//printf("%d %f\n", i, sec(clock()-time));
|
|
|
|
|
/*
|
|
|
|
|
else if(net.types[i] == CROP){ |
|
|
|
|
crop_layer layer = *(crop_layer *)net.layers[i]; |
|
|
|
@ -85,7 +85,7 @@ void backward_network_gpu(network net, cl_mem input) |
|
|
|
|
cl_mem prev_input; |
|
|
|
|
cl_mem prev_delta; |
|
|
|
|
for(i = net.n-1; i >= 0; --i){ |
|
|
|
|
clock_t time = clock(); |
|
|
|
|
//clock_t time = clock();
|
|
|
|
|
if(i == 0){ |
|
|
|
|
prev_input = input; |
|
|
|
|
prev_delta = 0; |
|
|
|
@ -113,7 +113,7 @@ void backward_network_gpu(network net, cl_mem input) |
|
|
|
|
softmax_layer layer = *(softmax_layer *)net.layers[i]; |
|
|
|
|
backward_softmax_layer_gpu(layer, prev_delta); |
|
|
|
|
} |
|
|
|
|
printf("back: %d %f\n", i, sec(clock()-time)); |
|
|
|
|
//printf("back: %d %f\n", i, sec(clock()-time));
|
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|