|
|
|
@ -222,13 +222,16 @@ char *basename(char *cfgfile) |
|
|
|
|
return c; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void train_imagenet(char *cfgfile) |
|
|
|
|
void train_imagenet(char *cfgfile, char *weightfile) |
|
|
|
|
{ |
|
|
|
|
float avg_loss = -1; |
|
|
|
|
srand(time(0)); |
|
|
|
|
char *base = basename(cfgfile); |
|
|
|
|
printf("%s\n", base); |
|
|
|
|
network net = parse_network_cfg(cfgfile); |
|
|
|
|
if(weightfile){ |
|
|
|
|
load_weights(&net, weightfile); |
|
|
|
|
} |
|
|
|
|
//test_learn_bias(*(convolutional_layer *)net.layers[1]);
|
|
|
|
|
//set_learning_network(&net, net.learning_rate, 0, net.decay);
|
|
|
|
|
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
|
|
|
@ -259,16 +262,19 @@ void train_imagenet(char *cfgfile) |
|
|
|
|
free_data(train); |
|
|
|
|
if(i%100==0){ |
|
|
|
|
char buff[256]; |
|
|
|
|
sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.cfg",base, i); |
|
|
|
|
save_network(net, buff); |
|
|
|
|
sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i); |
|
|
|
|
save_weights(net, buff); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void validate_imagenet(char *filename) |
|
|
|
|
void validate_imagenet(char *filename, char *weightfile) |
|
|
|
|
{ |
|
|
|
|
int i = 0; |
|
|
|
|
network net = parse_network_cfg(filename); |
|
|
|
|
if(weightfile){ |
|
|
|
|
load_weights(&net, weightfile); |
|
|
|
|
} |
|
|
|
|
srand(time(0)); |
|
|
|
|
|
|
|
|
|
char **labels = get_labels("/home/pjreddie/data/imagenet/cls.val.labels.list"); |
|
|
|
@ -370,14 +376,14 @@ void test_dog(char *cfgfile) |
|
|
|
|
float *X = im.data; |
|
|
|
|
network net = parse_network_cfg(cfgfile); |
|
|
|
|
set_batch_network(&net, 1); |
|
|
|
|
float *predictions = network_predict(net, X); |
|
|
|
|
network_predict(net, X); |
|
|
|
|
image crop = get_network_image_layer(net, 0); |
|
|
|
|
//show_image(crop, "cropped");
|
|
|
|
|
// print_image(crop);
|
|
|
|
|
//show_image(im, "orig");
|
|
|
|
|
show_image(crop, "cropped"); |
|
|
|
|
print_image(crop); |
|
|
|
|
show_image(im, "orig"); |
|
|
|
|
float * inter = get_network_output(net); |
|
|
|
|
pm(1000, 1, inter); |
|
|
|
|
//cvWaitKey(0);
|
|
|
|
|
cvWaitKey(0); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void test_imagenet(char *cfgfile) |
|
|
|
@ -586,7 +592,6 @@ void test_convolutional_layer() |
|
|
|
|
float *in = calloc(size, sizeof(float)); |
|
|
|
|
int i; |
|
|
|
|
for(i = 0; i < size; ++i) in[i] = rand_normal(); |
|
|
|
|
float *in_gpu = cuda_make_array(in, size); |
|
|
|
|
convolutional_layer layer = *(convolutional_layer *)net.layers[0]; |
|
|
|
|
int out_size = convolutional_out_height(layer)*convolutional_out_width(layer)*layer.batch; |
|
|
|
|
cuda_compare(layer.output_gpu, layer.output, out_size, "nothing"); |
|
|
|
@ -703,14 +708,18 @@ void del_arg(int argc, char **argv, int index) |
|
|
|
|
{ |
|
|
|
|
int i; |
|
|
|
|
for(i = index; i < argc-1; ++i) argv[i] = argv[i+1]; |
|
|
|
|
argv[i] = 0; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
int find_arg(int argc, char* argv[], char *arg) |
|
|
|
|
{ |
|
|
|
|
int i; |
|
|
|
|
for(i = 0; i < argc; ++i) if(0==strcmp(argv[i], arg)) { |
|
|
|
|
del_arg(argc, argv, i); |
|
|
|
|
return 1; |
|
|
|
|
for(i = 0; i < argc; ++i) { |
|
|
|
|
if(!argv[i]) continue; |
|
|
|
|
if(0==strcmp(argv[i], arg)) { |
|
|
|
|
del_arg(argc, argv, i); |
|
|
|
|
return 1; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
return 0; |
|
|
|
|
} |
|
|
|
@ -719,6 +728,7 @@ int find_int_arg(int argc, char **argv, char *arg, int def) |
|
|
|
|
{ |
|
|
|
|
int i; |
|
|
|
|
for(i = 0; i < argc-1; ++i){ |
|
|
|
|
if(!argv[i]) continue; |
|
|
|
|
if(0==strcmp(argv[i], arg)){ |
|
|
|
|
def = atoi(argv[i+1]); |
|
|
|
|
del_arg(argc, argv, i); |
|
|
|
@ -729,6 +739,20 @@ int find_int_arg(int argc, char **argv, char *arg, int def) |
|
|
|
|
return def; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void scale_rate(char *filename, float scale) |
|
|
|
|
{ |
|
|
|
|
// Ready for some weird shit??
|
|
|
|
|
FILE *fp = fopen(filename, "r+b"); |
|
|
|
|
if(!fp) file_error(filename); |
|
|
|
|
float rate = 0; |
|
|
|
|
fread(&rate, sizeof(float), 1, fp); |
|
|
|
|
printf("Scaling learning rate from %f to %f\n", rate, rate*scale); |
|
|
|
|
rate = rate*scale; |
|
|
|
|
fseek(fp, 0, SEEK_SET); |
|
|
|
|
fwrite(&rate, sizeof(float), 1, fp); |
|
|
|
|
fclose(fp); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
int main(int argc, char **argv) |
|
|
|
|
{ |
|
|
|
|
//test_convolutional_layer();
|
|
|
|
@ -765,12 +789,12 @@ int main(int argc, char **argv) |
|
|
|
|
else if(0==strcmp(argv[1], "ctrain")) train_cifar10(argv[2]); |
|
|
|
|
else if(0==strcmp(argv[1], "nist")) train_nist(argv[2]); |
|
|
|
|
else if(0==strcmp(argv[1], "ctest")) test_cifar10(argv[2]); |
|
|
|
|
else if(0==strcmp(argv[1], "train")) train_imagenet(argv[2]); |
|
|
|
|
else if(0==strcmp(argv[1], "train")) train_imagenet(argv[2], (argc > 3)? argv[3] : 0); |
|
|
|
|
//else if(0==strcmp(argv[1], "client")) train_imagenet_distributed(argv[2]);
|
|
|
|
|
else if(0==strcmp(argv[1], "detect")) test_detection(argv[2]); |
|
|
|
|
else if(0==strcmp(argv[1], "init")) test_init(argv[2]); |
|
|
|
|
else if(0==strcmp(argv[1], "visualize")) test_visualize(argv[2]); |
|
|
|
|
else if(0==strcmp(argv[1], "valid")) validate_imagenet(argv[2]); |
|
|
|
|
else if(0==strcmp(argv[1], "valid")) validate_imagenet(argv[2], (argc > 3)? argv[3] : 0); |
|
|
|
|
else if(0==strcmp(argv[1], "testnist")) test_nist(argv[2]); |
|
|
|
|
else if(0==strcmp(argv[1], "validetect")) validate_detection_net(argv[2]); |
|
|
|
|
else if(argc < 4){ |
|
|
|
@ -778,6 +802,7 @@ int main(int argc, char **argv) |
|
|
|
|
return 0; |
|
|
|
|
} |
|
|
|
|
else if(0==strcmp(argv[1], "compare")) compare_nist(argv[2], argv[3]); |
|
|
|
|
else if(0==strcmp(argv[1], "scale")) scale_rate(argv[2], atof(argv[3])); |
|
|
|
|
fprintf(stderr, "Success!\n"); |
|
|
|
|
return 0; |
|
|
|
|
} |
|
|
|
|