|
|
|
@ -1,6 +1,36 @@ |
|
|
|
|
#!python3 |
|
|
|
|
""" |
|
|
|
|
Python 3 wrapper for identifying objects in images |
|
|
|
|
|
|
|
|
|
Requires DLL compilation |
|
|
|
|
|
|
|
|
|
Both the GPU and no-GPU version should be compiled; the no-GPU version should be renamed "yolo_cpp_dll_nogpu.dll". |
|
|
|
|
|
|
|
|
|
On a GPU system, you can force CPU evaluation by any of: |
|
|
|
|
|
|
|
|
|
- Set global variable DARKNET_FORCE_CPU to True |
|
|
|
|
- Set environment variable CUDA_VISIBLE_DEVICES to -1 |
|
|
|
|
- Set environment variable "FORCE_CPU" to "true" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
To use, either run performDetect() after import, or modify the end of this file. |
|
|
|
|
|
|
|
|
|
See the docstring of performDetect() for parameters. |
|
|
|
|
|
|
|
|
|
Directly viewing or returning bounding-boxed images requires scikit-image to be installed (`pip install scikit-image`) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Original *nix 2.7: https://github.com/pjreddie/darknet/blob/0f110834f4e18b30d5f101bf8f1724c34b7b83db/python/darknet.py |
|
|
|
|
Windows Python 2.7 version: https://github.com/AlexeyAB/darknet/blob/fc496d52bf22a0bb257300d3c79be9cd80e722cb/build/darknet/x64/darknet.py |
|
|
|
|
|
|
|
|
|
@author: Philip Kahn |
|
|
|
|
@date: 20180503 |
|
|
|
|
""" |
|
|
|
|
#pylint: disable=R, W0401, W0614, W0703 |
|
|
|
|
from ctypes import * |
|
|
|
|
import math |
|
|
|
|
import random |
|
|
|
|
import os |
|
|
|
|
|
|
|
|
|
def sample(probs): |
|
|
|
|
s = sum(probs) |
|
|
|
@ -42,11 +72,53 @@ class METADATA(Structure): |
|
|
|
|
_fields_ = [("classes", c_int), |
|
|
|
|
("names", POINTER(c_char_p))] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#lib = CDLL("/home/pjreddie/documents/darknet/libdarknet.so", RTLD_GLOBAL) |
|
|
|
|
lib = CDLL("darknet.so", RTLD_GLOBAL) |
|
|
|
|
#lib = CDLL("yolo_cpp_dll.dll", RTLD_GLOBAL) |
|
|
|
|
#lib = CDLL("darknet.so", RTLD_GLOBAL) |
|
|
|
|
hasGPU = True |
|
|
|
|
if os.name == "nt": |
|
|
|
|
winGPUdll = "yolo_cpp_dll.dll" |
|
|
|
|
winNoGPUdll = "yolo_cpp_dll_nogpu.dll" |
|
|
|
|
envKeys = list() |
|
|
|
|
for k, v in os.environ.items(): |
|
|
|
|
envKeys.append(k) |
|
|
|
|
try: |
|
|
|
|
tmp = os.environ["CUDA_HOME"] |
|
|
|
|
try: |
|
|
|
|
tmp = os.environ["FORCE_CPU"].lower() |
|
|
|
|
if tmp in ["1", "true", "yes", "on"]: |
|
|
|
|
raise ValueError("ForceCPU") |
|
|
|
|
else: |
|
|
|
|
print("Flag value '"+tmp+"' not forcing CPU mode") |
|
|
|
|
except KeyError: |
|
|
|
|
# We never set the flag |
|
|
|
|
if 'CUDA_VISIBLE_DEVICES' in envKeys: |
|
|
|
|
if int(os.environ['CUDA_VISIBLE_DEVICES']) < 0: |
|
|
|
|
raise ValueError("ForceCPU") |
|
|
|
|
try: |
|
|
|
|
# Check a global |
|
|
|
|
global DARKNET_FORCE_CPU |
|
|
|
|
if DARKNET_FORCE_CPU: |
|
|
|
|
raise ValueError("ForceCPU") |
|
|
|
|
except NameError: |
|
|
|
|
pass |
|
|
|
|
print(os.environ.keys()) |
|
|
|
|
print("FORCE_CPU flag undefined, proceeding with GPU") |
|
|
|
|
if not os.path.exists(winGPUdll): |
|
|
|
|
raise ValueError("NoDLL") |
|
|
|
|
lib = CDLL(winGPUdll, RTLD_GLOBAL) |
|
|
|
|
except (KeyError, ValueError): |
|
|
|
|
print("Notice: GPU-free mode") |
|
|
|
|
hasGPU = False |
|
|
|
|
if os.path.exists(winNoGPUdll): |
|
|
|
|
lib = CDLL(winNoGPUdll, RTLD_GLOBAL) |
|
|
|
|
else: |
|
|
|
|
# Try the other way, in case no_gpu was |
|
|
|
|
# compile but not renamed |
|
|
|
|
lib = CDLL(winGPUdll, RTLD_GLOBAL) |
|
|
|
|
else: |
|
|
|
|
lib = CDLL("./libdarknet.so", RTLD_GLOBAL) |
|
|
|
|
lib.network_width.argtypes = [c_void_p] |
|
|
|
|
lib.network_width.restype = c_int |
|
|
|
|
lib.network_height.argtypes = [c_void_p] |
|
|
|
@ -56,8 +128,9 @@ predict = lib.network_predict |
|
|
|
|
predict.argtypes = [c_void_p, POINTER(c_float)] |
|
|
|
|
predict.restype = POINTER(c_float) |
|
|
|
|
|
|
|
|
|
set_gpu = lib.cuda_set_device |
|
|
|
|
set_gpu.argtypes = [c_int] |
|
|
|
|
if hasGPU: |
|
|
|
|
set_gpu = lib.cuda_set_device |
|
|
|
|
set_gpu.argtypes = [c_int] |
|
|
|
|
|
|
|
|
|
make_image = lib.make_image |
|
|
|
|
make_image.argtypes = [c_int, c_int, c_int] |
|
|
|
@ -119,40 +192,208 @@ def classify(net, meta, im): |
|
|
|
|
out = predict_image(net, im) |
|
|
|
|
res = [] |
|
|
|
|
for i in range(meta.classes): |
|
|
|
|
res.append((meta.names[i], out[i])) |
|
|
|
|
if altNames is None: |
|
|
|
|
nameTag = meta.names[i] |
|
|
|
|
else: |
|
|
|
|
nameTag = altNames[i] |
|
|
|
|
res.append((nameTag, out[i])) |
|
|
|
|
res = sorted(res, key=lambda x: -x[1]) |
|
|
|
|
return res |
|
|
|
|
|
|
|
|
|
def detect(net, meta, image, thresh=.5, hier_thresh=.5, nms=.45): |
|
|
|
|
def detect(net, meta, image, thresh=.5, hier_thresh=.5, nms=.45, debug= False): |
|
|
|
|
""" |
|
|
|
|
Performs the meat of the detection |
|
|
|
|
""" |
|
|
|
|
#pylint: disable= C0321 |
|
|
|
|
im = load_image(image, 0, 0) |
|
|
|
|
if debug: print("Loaded image") |
|
|
|
|
num = c_int(0) |
|
|
|
|
if debug: print("Assigned num") |
|
|
|
|
pnum = pointer(num) |
|
|
|
|
if debug: print("Assigned pnum") |
|
|
|
|
predict_image(net, im) |
|
|
|
|
if debug: print("did prediction") |
|
|
|
|
dets = get_network_boxes(net, im.w, im.h, thresh, hier_thresh, None, 0, pnum, 1) |
|
|
|
|
if debug: print("Got dets") |
|
|
|
|
num = pnum[0] |
|
|
|
|
#if (nms): do_nms_obj(dets, num, meta.classes, nms); |
|
|
|
|
if (nms): do_nms_sort(dets, num, meta.classes, nms); |
|
|
|
|
|
|
|
|
|
if debug: print("got zeroth index of pnum") |
|
|
|
|
if nms: |
|
|
|
|
do_nms_sort(dets, num, meta.classes, nms) |
|
|
|
|
if debug: print("did sort") |
|
|
|
|
res = [] |
|
|
|
|
if debug: print("about to range") |
|
|
|
|
for j in range(num): |
|
|
|
|
if debug: print("Ranging on "+str(j)+" of "+str(num)) |
|
|
|
|
if debug: print("Classes: "+str(meta), meta.classes, meta.names) |
|
|
|
|
for i in range(meta.classes): |
|
|
|
|
if debug: print("Class-ranging on "+str(i)+" of "+str(meta.classes)+"= "+str(dets[j].prob[i])) |
|
|
|
|
if dets[j].prob[i] > 0: |
|
|
|
|
b = dets[j].bbox |
|
|
|
|
res.append((meta.names[i], dets[j].prob[i], (b.x, b.y, b.w, b.h))) |
|
|
|
|
if altNames is None: |
|
|
|
|
nameTag = meta.names[i] |
|
|
|
|
else: |
|
|
|
|
nameTag = altNames[i] |
|
|
|
|
if debug: |
|
|
|
|
print("Got bbox", b) |
|
|
|
|
print(nameTag) |
|
|
|
|
print(dets[j].prob[i]) |
|
|
|
|
print((b.x, b.y, b.w, b.h)) |
|
|
|
|
res.append((nameTag, dets[j].prob[i], (b.x, b.y, b.w, b.h))) |
|
|
|
|
if debug: print("did range") |
|
|
|
|
res = sorted(res, key=lambda x: -x[1]) |
|
|
|
|
if debug: print("did sort") |
|
|
|
|
free_image(im) |
|
|
|
|
if debug: print("freed image") |
|
|
|
|
free_detections(dets, num) |
|
|
|
|
if debug: print("freed detections") |
|
|
|
|
return res |
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
|
#net = load_net("cfg/densenet201.cfg", "/home/pjreddie/trained/densenet201.weights", 0) |
|
|
|
|
#im = load_image("data/wolf.jpg", 0, 0) |
|
|
|
|
#meta = load_meta("cfg/imagenet1k.data") |
|
|
|
|
#r = classify(net, meta, im) |
|
|
|
|
#print r[:10] |
|
|
|
|
net = load_net("cfg/yolov3.cfg", "yolov3.weights", 0) |
|
|
|
|
meta = load_meta("cfg/coco.data") |
|
|
|
|
r = detect(net, meta, "data/dog.jpg", 0.25) |
|
|
|
|
print r |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
netMain = None |
|
|
|
|
metaMain = None |
|
|
|
|
altNames = None |
|
|
|
|
|
|
|
|
|
def performDetect(imagePath="data/dog.jpg", thresh= 0.25, configPath = "./yolov3.cfg", weightPath = "yolov3.weights", metaPath= "./data/coco.data", showImage= True, makeImageOnly = False, initOnly= False): |
|
|
|
|
""" |
|
|
|
|
Convenience function to handle the detection and returns of objects. |
|
|
|
|
|
|
|
|
|
Displaying bounding boxes requires libraries scikit-image and numpy |
|
|
|
|
|
|
|
|
|
Parameters |
|
|
|
|
---------------- |
|
|
|
|
imagePath: str |
|
|
|
|
Path to the image to evaluate. Raises ValueError if not found |
|
|
|
|
|
|
|
|
|
thresh: float (default= 0.25) |
|
|
|
|
The detection threshold |
|
|
|
|
|
|
|
|
|
configPath: str |
|
|
|
|
Path to the configuration file. Raises ValueError if not found |
|
|
|
|
|
|
|
|
|
weightPath: str |
|
|
|
|
Path to the weights file. Raises ValueError if not found |
|
|
|
|
|
|
|
|
|
metaPath: str |
|
|
|
|
Path to the data file. Raises ValueError if not found |
|
|
|
|
|
|
|
|
|
showImage: bool (default= True) |
|
|
|
|
Compute (and show) bounding boxes. Changes return. |
|
|
|
|
|
|
|
|
|
makeImageOnly: bool (default= False) |
|
|
|
|
If showImage is True, this won't actually *show* the image, but will create the array and return it. |
|
|
|
|
|
|
|
|
|
initOnly: bool (default= False) |
|
|
|
|
Only initialize globals. Don't actually run a prediction. |
|
|
|
|
|
|
|
|
|
Returns |
|
|
|
|
---------------------- |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
When showImage is False, list of tuples like |
|
|
|
|
('obj_label', confidence, (bounding_box_x_px, bounding_box_y_px, bounding_box_width_px, bounding_box_height_px)) |
|
|
|
|
The X and Y coordinates are from the center of the bounding box. Subtract half the width or height to get the lower corner. |
|
|
|
|
|
|
|
|
|
Otherwise, a dict with |
|
|
|
|
{ |
|
|
|
|
"detections": as above |
|
|
|
|
"image": a numpy array representing an image, compatible with scikit-image |
|
|
|
|
"caption": an image caption |
|
|
|
|
} |
|
|
|
|
""" |
|
|
|
|
# Import the global variables. This lets us instance Darknet once, then just call performDetect() again without instancing again |
|
|
|
|
global metaMain, netMain, altNames #pylint: disable=W0603 |
|
|
|
|
assert 0 < thresh < 1, "Threshold should be a float between zero and one (non-inclusive)" |
|
|
|
|
if not os.path.exists(configPath): |
|
|
|
|
raise ValueError("Invalid config path `"+os.path.abspath(configPath)+"`") |
|
|
|
|
if not os.path.exists(weightPath): |
|
|
|
|
raise ValueError("Invalid weight path `"+os.path.abspath(weightPath)+"`") |
|
|
|
|
if not os.path.exists(metaPath): |
|
|
|
|
raise ValueError("Invalid data file path `"+os.path.abspath(metaPath)+"`") |
|
|
|
|
if netMain is None: |
|
|
|
|
netMain = load_net(configPath.encode("ascii"), weightPath.encode("ascii"), 0) |
|
|
|
|
if metaMain is None: |
|
|
|
|
metaMain = load_meta(metaPath.encode("ascii")) |
|
|
|
|
if altNames is None: |
|
|
|
|
# In Python 3, the metafile default access craps out on Windows (but not Linux) |
|
|
|
|
# Read the names file and create a list to feed to detect |
|
|
|
|
try: |
|
|
|
|
with open(metaPath) as metaFH: |
|
|
|
|
metaContents = metaFH.read() |
|
|
|
|
import re |
|
|
|
|
match = re.search("names *= *(.*)$", metaContents, re.IGNORECASE | re.MULTILINE) |
|
|
|
|
if match: |
|
|
|
|
result = match.group(1) |
|
|
|
|
else: |
|
|
|
|
result = None |
|
|
|
|
try: |
|
|
|
|
if os.path.exists(result): |
|
|
|
|
with open(result) as namesFH: |
|
|
|
|
namesList = namesFH.read().strip().split("\n") |
|
|
|
|
altNames = [x.strip() for x in namesList] |
|
|
|
|
except TypeError: |
|
|
|
|
pass |
|
|
|
|
except Exception: |
|
|
|
|
pass |
|
|
|
|
if initOnly: |
|
|
|
|
print("Initialized detector") |
|
|
|
|
return None |
|
|
|
|
if not os.path.exists(imagePath): |
|
|
|
|
raise ValueError("Invalid image path `"+os.path.abspath(imagePath)+"`") |
|
|
|
|
# Do the detection |
|
|
|
|
detections = detect(netMain, metaMain, imagePath.encode("ascii"), thresh) |
|
|
|
|
if showImage: |
|
|
|
|
try: |
|
|
|
|
from skimage import io, draw |
|
|
|
|
import numpy as np |
|
|
|
|
image = io.imread(imagePath) |
|
|
|
|
print("*** "+str(len(detections))+" Results, color coded by confidence ***") |
|
|
|
|
imcaption = [] |
|
|
|
|
for detection in detections: |
|
|
|
|
label = detection[0] |
|
|
|
|
confidence = detection[1] |
|
|
|
|
pstring = label+": "+str(np.rint(100 * confidence))+"%" |
|
|
|
|
imcaption.append(pstring) |
|
|
|
|
print(pstring) |
|
|
|
|
bounds = detection[2] |
|
|
|
|
shape = image.shape |
|
|
|
|
# x = shape[1] |
|
|
|
|
# xExtent = int(x * bounds[2] / 100) |
|
|
|
|
# y = shape[0] |
|
|
|
|
# yExtent = int(y * bounds[3] / 100) |
|
|
|
|
yExtent = int(bounds[3]) |
|
|
|
|
xEntent = int(bounds[2]) |
|
|
|
|
# Coordinates are around the center |
|
|
|
|
xCoord = int(bounds[0] - bounds[2]/2) |
|
|
|
|
yCoord = int(bounds[1] - bounds[3]/2) |
|
|
|
|
boundingBox = [ |
|
|
|
|
[xCoord, yCoord], |
|
|
|
|
[xCoord, yCoord + yExtent], |
|
|
|
|
[xCoord + xEntent, yCoord + yExtent], |
|
|
|
|
[xCoord + xEntent, yCoord] |
|
|
|
|
] |
|
|
|
|
# Wiggle it around to make a 3px border |
|
|
|
|
rr, cc = draw.polygon_perimeter([x[1] for x in boundingBox], [x[0] for x in boundingBox], shape= shape) |
|
|
|
|
rr2, cc2 = draw.polygon_perimeter([x[1] + 1 for x in boundingBox], [x[0] for x in boundingBox], shape= shape) |
|
|
|
|
rr3, cc3 = draw.polygon_perimeter([x[1] - 1 for x in boundingBox], [x[0] for x in boundingBox], shape= shape) |
|
|
|
|
rr4, cc4 = draw.polygon_perimeter([x[1] for x in boundingBox], [x[0] + 1 for x in boundingBox], shape= shape) |
|
|
|
|
rr5, cc5 = draw.polygon_perimeter([x[1] for x in boundingBox], [x[0] - 1 for x in boundingBox], shape= shape) |
|
|
|
|
boxColor = (int(255 * (1 - (confidence ** 2))), int(255 * (confidence ** 2)), 0) |
|
|
|
|
draw.set_color(image, (rr, cc), boxColor, alpha= 0.8) |
|
|
|
|
draw.set_color(image, (rr2, cc2), boxColor, alpha= 0.8) |
|
|
|
|
draw.set_color(image, (rr3, cc3), boxColor, alpha= 0.8) |
|
|
|
|
draw.set_color(image, (rr4, cc4), boxColor, alpha= 0.8) |
|
|
|
|
draw.set_color(image, (rr5, cc5), boxColor, alpha= 0.8) |
|
|
|
|
if not makeImageOnly: |
|
|
|
|
io.imshow(image) |
|
|
|
|
io.show() |
|
|
|
|
detections = { |
|
|
|
|
"detections": detections, |
|
|
|
|
"image": image, |
|
|
|
|
"caption": "\n<br/>".join(imcaption) |
|
|
|
|
} |
|
|
|
|
except Exception as e: |
|
|
|
|
print("Unable to show image: "+str(e)) |
|
|
|
|
return detections |
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
|
print(performDetect()) |
|
|
|
|