Some explanations for training

pull/5400/head
AlexeyAB 5 years ago
parent 6d38218a04
commit 36c73c5b9e
  1. 2
      README.md
  2. 7
      build/darknet/x64/cfg/yolov4.cfg
  3. 7
      cfg/yolov4.cfg

@ -389,7 +389,7 @@ Then add to your created project:
2. Then stop and by using partially-trained model `/backup/yolov4_1000.weights` run training with multigpu (up to 4 GPUs): `darknet.exe detector train cfg/coco.data cfg/yolov4.cfg /backup/yolov4_1000.weights -gpus 0,1,2,3` 2. Then stop and by using partially-trained model `/backup/yolov4_1000.weights` run training with multigpu (up to 4 GPUs): `darknet.exe detector train cfg/coco.data cfg/yolov4.cfg /backup/yolov4_1000.weights -gpus 0,1,2,3`
Only for small datasets sometimes better to decrease learning rate, for 4 GPUs set `learning_rate = 0.00025` (i.e. learning_rate = 0.001 / GPUs). In this case also increase 4x times `burn_in =` and `max_batches =` in your cfg-file. I.e. use `burn_in = 4000` instead of `1000`. Same goes for `steps=` if `policy=steps` is set. If you get a Nan, then for some datasets better to decrease learning rate, for 4 GPUs set `learning_rate = 0,00065` (i.e. learning_rate = 0.00261 / GPUs). In this case also increase 4x times `burn_in =` in your cfg-file. I.e. use `burn_in = 4000` instead of `1000`.
https://groups.google.com/d/msg/darknet/NbJqonJBTSY/Te5PfIpuCAAJ https://groups.google.com/d/msg/darknet/NbJqonJBTSY/Te5PfIpuCAAJ

@ -1,10 +1,9 @@
[net] [net]
# Testing
#batch=1
#subdivisions=1
# Training
batch=64 batch=64
subdivisions=8 subdivisions=8
# Training
#width=512
#height=512
width=608 width=608
height=608 height=608
channels=3 channels=3

@ -1,10 +1,9 @@
[net] [net]
# Testing
#batch=1
#subdivisions=1
# Training
batch=64 batch=64
subdivisions=8 subdivisions=8
# Training
#width=512
#height=512
width=608 width=608
height=608 height=608
channels=3 channels=3

Loading…
Cancel
Save