@ -104,8 +104,10 @@ You can get cfg-files by path: `darknet/cfg/`
* **PyTorch > ONNX > CoreML > iOS** how to convert cfg/weights-files to pt-file: [ultralytics/yolov3](https://github.com/ultralytics/yolov3#darknet-conversion) and [iOS App](https://itunes.apple.com/app/id1452689527)
* **TensorRT** for YOLOv3 (-70% faster inference): [Yolo is natively supported in DeepStream 4.0](https://news.developer.nvidia.com/deepstream-sdk-4-now-available/)
* **TVM** - compilation of deep learning models (Keras, MXNet, PyTorch, Tensorflow, CoreML, DarkNet) into minimum deployable modules on diverse hardware backends (CPUs, GPUs, FPGA, and specialized accelerators): https://tvm.ai/about
* **OpenDataCam** - It detects, tracks and counts moving objects by using Yolo: https://github.com/opendatacam/opendatacam#-hardware-pre-requisite
* **Netron** - Visualizer for neural networks: https://github.com/lutzroeder/netron
#### Datasets
* MS COCO: use `./scripts/get_coco_dataset.sh` to get labeled MS COCO detection dataset