Fixed training, calculation mAP and anchors for Yolo v3

pull/604/merge
AlexeyAB 7 years ago
parent d28f7e6681
commit 3fc3fd0f1f
  1. 4
      build/darknet/x64/calc_anchors.cmd
  2. 4
      build/darknet/x64/calc_mAP.cmd
  3. 5
      build/darknet/x64/darknet_yolo_v3_video.cmd
  4. 4
      build/darknet/x64/data/voc.data
  5. 8
      build/darknet/x64/yolov3.cfg
  6. 3
      src/data.c
  7. 2
      src/data.h
  8. 559
      src/detector.c
  9. 10
      src/network.c
  10. 21
      src/yolo_layer.c

@ -1,10 +1,10 @@
rem # How to calculate Yolo v2 anchors using K-means++
darknet.exe detector calc_anchors data/voc.data -num_of_clusters 5 -final_width 13 -final_heigh 13
darknet.exe detector calc_anchors data/voc.data -num_of_clusters 5 -width 416 -heigh 416
rem darknet.exe detector calc_anchors data/voc.data -num_of_clusters 5 -final_width 13 -final_heigh 13 -show
rem darknet.exe detector calc_anchors data/voc.data -num_of_clusters 5 -width 416 -heigh 416 -show

@ -1,10 +1,10 @@
rem # How to calculate mAP (mean average precision)
rem darknet.exe detector map data/voc.data tiny-yolo-voc.cfg tiny-yolo-voc.weights
rem darknet.exe detector map data/voc.data cfg/yolov2-tiny-voc.cfg yolov2-tiny-voc.weights
darknet.exe detector map data/voc.data yolo-voc.cfg yolo-voc.weights
darknet.exe detector map data/voc.data cfg/yolov2-voc.cfg yolo-voc.weights

@ -0,0 +1,5 @@
darknet.exe detector demo data/coco.data yolov3.cfg yolov3.weights -i 0 -thresh 0.25 test.mp4
pause

@ -1,7 +1,7 @@
classes= 20
train = data/train_voc.txt
valid = data/voc/2007_test.txt
#difficult = data/voc/difficult_2007_test.txt
valid = data/2007_test.txt
#difficult = data/difficult_2007_test.txt
names = data/voc.names
backup = backup/

@ -1,10 +1,10 @@
[net]
# Testing
batch=1
subdivisions=1
#batch=1
#subdivisions=1
# Training
# batch=64
# subdivisions=16
batch=64
subdivisions=16
width=416
height=416
channels=3

@ -827,6 +827,9 @@ void *load_thread(void *ptr)
} else if (a.type == IMAGE_DATA){
*(a.im) = load_image_color(a.path, 0, 0);
*(a.resized) = resize_image(*(a.im), a.w, a.h);
}else if (a.type == LETTERBOX_DATA) {
*(a.im) = load_image_color(a.path, 0, 0);
*(a.resized) = letterbox_image(*(a.im), a.w, a.h);
} else if (a.type == TAG_DATA){
*a.d = load_data_tag(a.paths, a.n, a.m, a.classes, a.min, a.max, a.size, a.angle, a.aspect, a.hue, a.saturation, a.exposure);
}

@ -32,7 +32,7 @@ typedef struct{
} data;
typedef enum {
CLASSIFICATION_DATA, DETECTION_DATA, CAPTCHA_DATA, REGION_DATA, IMAGE_DATA, COMPARE_DATA, WRITING_DATA, SWAG_DATA, TAG_DATA, OLD_CLASSIFICATION_DATA, STUDY_DATA, DET_DATA, SUPER_DATA
CLASSIFICATION_DATA, DETECTION_DATA, CAPTCHA_DATA, REGION_DATA, IMAGE_DATA, LETTERBOX_DATA, COMPARE_DATA, WRITING_DATA, SWAG_DATA, TAG_DATA, OLD_CLASSIFICATION_DATA, STUDY_DATA, DET_DATA, SUPER_DATA
} data_type;
typedef struct load_args{

@ -170,7 +170,7 @@ void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, i
avg_loss = avg_loss*.9 + loss*.1;
i = get_current_batch(net);
printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
printf("\n %d: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
#ifdef OPENCV
if(!dont_show)
@ -204,301 +204,290 @@ void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, i
static int get_coco_image_id(char *filename)
{
char *p = strrchr(filename, '_');
return atoi(p+1);
char *p = strrchr(filename, '/');
char *c = strrchr(filename, '_');
if (c) p = c;
return atoi(p + 1);
}
static void print_cocos(FILE *fp, char *image_path, box *boxes, float **probs, int num_boxes, int classes, int w, int h)
static void print_cocos(FILE *fp, char *image_path, detection *dets, int num_boxes, int classes, int w, int h)
{
int i, j;
int image_id = get_coco_image_id(image_path);
for(i = 0; i < num_boxes; ++i){
float xmin = boxes[i].x - boxes[i].w/2.;
float xmax = boxes[i].x + boxes[i].w/2.;
float ymin = boxes[i].y - boxes[i].h/2.;
float ymax = boxes[i].y + boxes[i].h/2.;
if (xmin < 0) xmin = 0;
if (ymin < 0) ymin = 0;
if (xmax > w) xmax = w;
if (ymax > h) ymax = h;
float bx = xmin;
float by = ymin;
float bw = xmax - xmin;
float bh = ymax - ymin;
for(j = 0; j < classes; ++j){
if (probs[i][j]) fprintf(fp, "{\"image_id\":%d, \"category_id\":%d, \"bbox\":[%f, %f, %f, %f], \"score\":%f},\n", image_id, coco_ids[j], bx, by, bw, bh, probs[i][j]);
}
}
int i, j;
int image_id = get_coco_image_id(image_path);
for (i = 0; i < num_boxes; ++i) {
float xmin = dets[i].bbox.x - dets[i].bbox.w / 2.;
float xmax = dets[i].bbox.x + dets[i].bbox.w / 2.;
float ymin = dets[i].bbox.y - dets[i].bbox.h / 2.;
float ymax = dets[i].bbox.y + dets[i].bbox.h / 2.;
if (xmin < 0) xmin = 0;
if (ymin < 0) ymin = 0;
if (xmax > w) xmax = w;
if (ymax > h) ymax = h;
float bx = xmin;
float by = ymin;
float bw = xmax - xmin;
float bh = ymax - ymin;
for (j = 0; j < classes; ++j) {
if (dets[i].prob[j]) fprintf(fp, "{\"image_id\":%d, \"category_id\":%d, \"bbox\":[%f, %f, %f, %f], \"score\":%f},\n", image_id, coco_ids[j], bx, by, bw, bh, dets[i].prob[j]);
}
}
}
void print_detector_detections(FILE **fps, char *id, box *boxes, float **probs, int total, int classes, int w, int h)
void print_detector_detections(FILE **fps, char *id, detection *dets, int total, int classes, int w, int h)
{
int i, j;
for(i = 0; i < total; ++i){
float xmin = boxes[i].x - boxes[i].w/2.;
float xmax = boxes[i].x + boxes[i].w/2.;
float ymin = boxes[i].y - boxes[i].h/2.;
float ymax = boxes[i].y + boxes[i].h/2.;
if (xmin < 0) xmin = 0;
if (ymin < 0) ymin = 0;
if (xmax > w) xmax = w;
if (ymax > h) ymax = h;
for(j = 0; j < classes; ++j){
if (probs[i][j]) fprintf(fps[j], "%s %f %f %f %f %f\n", id, probs[i][j],
xmin, ymin, xmax, ymax);
}
}
int i, j;
for (i = 0; i < total; ++i) {
float xmin = dets[i].bbox.x - dets[i].bbox.w / 2. + 1;
float xmax = dets[i].bbox.x + dets[i].bbox.w / 2. + 1;
float ymin = dets[i].bbox.y - dets[i].bbox.h / 2. + 1;
float ymax = dets[i].bbox.y + dets[i].bbox.h / 2. + 1;
if (xmin < 1) xmin = 1;
if (ymin < 1) ymin = 1;
if (xmax > w) xmax = w;
if (ymax > h) ymax = h;
for (j = 0; j < classes; ++j) {
if (dets[i].prob[j]) fprintf(fps[j], "%s %f %f %f %f %f\n", id, dets[i].prob[j],
xmin, ymin, xmax, ymax);
}
}
}
void print_imagenet_detections(FILE *fp, int id, box *boxes, float **probs, int total, int classes, int w, int h)
void print_imagenet_detections(FILE *fp, int id, detection *dets, int total, int classes, int w, int h)
{
int i, j;
for(i = 0; i < total; ++i){
float xmin = boxes[i].x - boxes[i].w/2.;
float xmax = boxes[i].x + boxes[i].w/2.;
float ymin = boxes[i].y - boxes[i].h/2.;
float ymax = boxes[i].y + boxes[i].h/2.;
if (xmin < 0) xmin = 0;
if (ymin < 0) ymin = 0;
if (xmax > w) xmax = w;
if (ymax > h) ymax = h;
for(j = 0; j < classes; ++j){
int class_id = j;
if (probs[i][class_id]) fprintf(fp, "%d %d %f %f %f %f %f\n", id, j+1, probs[i][class_id],
xmin, ymin, xmax, ymax);
}
}
int i, j;
for (i = 0; i < total; ++i) {
float xmin = dets[i].bbox.x - dets[i].bbox.w / 2.;
float xmax = dets[i].bbox.x + dets[i].bbox.w / 2.;
float ymin = dets[i].bbox.y - dets[i].bbox.h / 2.;
float ymax = dets[i].bbox.y + dets[i].bbox.h / 2.;
if (xmin < 0) xmin = 0;
if (ymin < 0) ymin = 0;
if (xmax > w) xmax = w;
if (ymax > h) ymax = h;
for (j = 0; j < classes; ++j) {
int class = j;
if (dets[i].prob[class]) fprintf(fp, "%d %d %f %f %f %f %f\n", id, j + 1, dets[i].prob[class],
xmin, ymin, xmax, ymax);
}
}
}
void validate_detector(char *datacfg, char *cfgfile, char *weightfile)
void validate_detector(char *datacfg, char *cfgfile, char *weightfile, char *outfile)
{
int j;
list *options = read_data_cfg(datacfg);
char *valid_images = option_find_str(options, "valid", "data/train.list");
char *name_list = option_find_str(options, "names", "data/names.list");
char *prefix = option_find_str(options, "results", "results");
char **names = get_labels(name_list);
char *mapf = option_find_str(options, "map", 0);
int *map = 0;
if (mapf) map = read_map(mapf);
network net = parse_network_cfg_custom(cfgfile, 1);
if(weightfile){
load_weights(&net, weightfile);
}
set_batch_network(&net, 1);
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
srand(time(0));
char *base = "comp4_det_test_";
list *plist = get_paths(valid_images);
char **paths = (char **)list_to_array(plist);
int j;
list *options = read_data_cfg(datacfg);
char *valid_images = option_find_str(options, "valid", "data/train.list");
char *name_list = option_find_str(options, "names", "data/names.list");
char *prefix = option_find_str(options, "results", "results");
char **names = get_labels(name_list);
char *mapf = option_find_str(options, "map", 0);
int *map = 0;
if (mapf) map = read_map(mapf);
layer l = net.layers[net.n-1];
int classes = l.classes;
network net = parse_network_cfg_custom(cfgfile, 1);
if (weightfile) {
load_weights(&net, weightfile);
}
set_batch_network(&net, 1);
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
srand(time(0));
char buff[1024];
char *type = option_find_str(options, "eval", "voc");
FILE *fp = 0;
FILE **fps = 0;
int coco = 0;
int imagenet = 0;
if(0==strcmp(type, "coco")){
snprintf(buff, 1024, "%s/coco_results.json", prefix);
fp = fopen(buff, "w");
fprintf(fp, "[\n");
coco = 1;
} else if(0==strcmp(type, "imagenet")){
snprintf(buff, 1024, "%s/imagenet-detection.txt", prefix);
fp = fopen(buff, "w");
imagenet = 1;
classes = 200;
} else {
fps = calloc(classes, sizeof(FILE *));
for(j = 0; j < classes; ++j){
snprintf(buff, 1024, "%s/%s%s.txt", prefix, base, names[j]);
fps[j] = fopen(buff, "w");
}
}
list *plist = get_paths(valid_images);
char **paths = (char **)list_to_array(plist);
layer l = net.layers[net.n - 1];
int classes = l.classes;
box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
float **probs = calloc(l.w*l.h*l.n, sizeof(float *));
for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));
char buff[1024];
char *type = option_find_str(options, "eval", "voc");
FILE *fp = 0;
FILE **fps = 0;
int coco = 0;
int imagenet = 0;
if (0 == strcmp(type, "coco")) {
if (!outfile) outfile = "coco_results";
snprintf(buff, 1024, "%s/%s.json", prefix, outfile);
fp = fopen(buff, "w");
fprintf(fp, "[\n");
coco = 1;
}
else if (0 == strcmp(type, "imagenet")) {
if (!outfile) outfile = "imagenet-detection";
snprintf(buff, 1024, "%s/%s.txt", prefix, outfile);
fp = fopen(buff, "w");
imagenet = 1;
classes = 200;
}
else {
if (!outfile) outfile = "comp4_det_test_";
fps = calloc(classes, sizeof(FILE *));
for (j = 0; j < classes; ++j) {
snprintf(buff, 1024, "%s/%s%s.txt", prefix, outfile, names[j]);
fps[j] = fopen(buff, "w");
}
}
int m = plist->size;
int i=0;
int t;
float thresh = .005;
float nms = .45;
int m = plist->size;
int i = 0;
int t;
int detection_count = 0;
float thresh = .005;
float nms = .45;
int nthreads = 4;
image *val = calloc(nthreads, sizeof(image));
image *val_resized = calloc(nthreads, sizeof(image));
image *buf = calloc(nthreads, sizeof(image));
image *buf_resized = calloc(nthreads, sizeof(image));
pthread_t *thr = calloc(nthreads, sizeof(pthread_t));
int nthreads = 4;
image *val = calloc(nthreads, sizeof(image));
image *val_resized = calloc(nthreads, sizeof(image));
image *buf = calloc(nthreads, sizeof(image));
image *buf_resized = calloc(nthreads, sizeof(image));
pthread_t *thr = calloc(nthreads, sizeof(pthread_t));
load_args args = {0};
args.w = net.w;
args.h = net.h;
args.type = IMAGE_DATA;
load_args args = { 0 };
args.w = net.w;
args.h = net.h;
args.type = IMAGE_DATA;
//args.type = LETTERBOX_DATA;
for(t = 0; t < nthreads; ++t){
args.path = paths[i+t];
args.im = &buf[t];
args.resized = &buf_resized[t];
thr[t] = load_data_in_thread(args);
}
time_t start = time(0);
for(i = nthreads; i < m+nthreads; i += nthreads){
fprintf(stderr, "%d\n", i);
for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
pthread_join(thr[t], 0);
val[t] = buf[t];
val_resized[t] = buf_resized[t];
}
for(t = 0; t < nthreads && i+t < m; ++t){
args.path = paths[i+t];
args.im = &buf[t];
args.resized = &buf_resized[t];
thr[t] = load_data_in_thread(args);
}
for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
char *path = paths[i+t-nthreads];
char *id = basecfg(path);
float *X = val_resized[t].data;
network_predict(net, X);
int w = val[t].w;
int h = val[t].h;
get_region_boxes(l, w, h, thresh, probs, boxes, 0, map);
if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, classes, nms);
int x, y;
for (x = 0; x < (l.w*l.h*l.n); ++x) {
for (y = 0; y < classes; ++y)
{
if (probs[x][y]) ++detection_count;
}
for (t = 0; t < nthreads; ++t) {
args.path = paths[i + t];
args.im = &buf[t];
args.resized = &buf_resized[t];
thr[t] = load_data_in_thread(args);
}
time_t start = time(0);
for (i = nthreads; i < m + nthreads; i += nthreads) {
fprintf(stderr, "%d\n", i);
for (t = 0; t < nthreads && i + t - nthreads < m; ++t) {
pthread_join(thr[t], 0);
val[t] = buf[t];
val_resized[t] = buf_resized[t];
}
for (t = 0; t < nthreads && i + t < m; ++t) {
args.path = paths[i + t];
args.im = &buf[t];
args.resized = &buf_resized[t];
thr[t] = load_data_in_thread(args);
}
for (t = 0; t < nthreads && i + t - nthreads < m; ++t) {
char *path = paths[i + t - nthreads];
char *id = basecfg(path);
float *X = val_resized[t].data;
network_predict(net, X);
int w = val[t].w;
int h = val[t].h;
int nboxes = 0;
int letterbox = (args.type == LETTERBOX_DATA);
detection *dets = get_network_boxes(&net, w, h, thresh, .5, map, 0, &nboxes, letterbox);
if (nms) do_nms_sort_v3(dets, nboxes, classes, nms);
if (coco) {
print_cocos(fp, path, dets, nboxes, classes, w, h);
}
if (coco){
print_cocos(fp, path, boxes, probs, l.w*l.h*l.n, classes, w, h);
} else if (imagenet){
print_imagenet_detections(fp, i+t-nthreads+1, boxes, probs, l.w*l.h*l.n, classes, w, h);
} else {
print_detector_detections(fps, id, boxes, probs, l.w*l.h*l.n, classes, w, h);
}
free(id);
free_image(val[t]);
free_image(val_resized[t]);
}
}
for(j = 0; j < classes; ++j){
if(fps) fclose(fps[j]);
}
if(coco){
fseek(fp, -2, SEEK_CUR);
fprintf(fp, "\n]\n");
fclose(fp);
}
printf("\n detection_count = %d \n", detection_count);
fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
else if (imagenet) {
print_imagenet_detections(fp, i + t - nthreads + 1, dets, nboxes, classes, w, h);
}
else {
print_detector_detections(fps, id, dets, nboxes, classes, w, h);
}
free_detections(dets, nboxes);
free(id);
free_image(val[t]);
free_image(val_resized[t]);
}
}
for (j = 0; j < classes; ++j) {
if (fps) fclose(fps[j]);
}
if (coco) {
fseek(fp, -2, SEEK_CUR);
fprintf(fp, "\n]\n");
fclose(fp);
}
fprintf(stderr, "Total Detection Time: %f Seconds\n", time(0) - start);
}
void validate_detector_recall(char *datacfg, char *cfgfile, char *weightfile)
{
network net = parse_network_cfg_custom(cfgfile, 1);
if(weightfile){
load_weights(&net, weightfile);
}
set_batch_network(&net, 1);
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
srand(time(0));
network net = parse_network_cfg_custom(cfgfile, 1);
if (weightfile) {
load_weights(&net, weightfile);
}
set_batch_network(&net, 1);
srand(time(0));
//list *plist = get_paths("data/coco_val_5k.list");
list *options = read_data_cfg(datacfg);
char *valid_images = option_find_str(options, "valid", "data/train.txt");
list *plist = get_paths(valid_images);
char **paths = (char **)list_to_array(plist);
list *plist = get_paths(valid_images);
char **paths = (char **)list_to_array(plist);
layer l = net.layers[net.n-1];
int classes = l.classes;
layer l = net.layers[net.n - 1];
int j, k;
box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
float **probs = calloc(l.w*l.h*l.n, sizeof(float *));
for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));
int m = plist->size;
int i=0;
float thresh = .001;// .001; // .2;
float iou_thresh = .5;
float nms = .4;
int detection_count = 0, truth_count = 0;
int total = 0;
int correct = 0;
int proposals = 0;
float avg_iou = 0;
for(i = 0; i < m; ++i){
char *path = paths[i];
image orig = load_image_color(path, 0, 0);
image sized = resize_image(orig, net.w, net.h);
char *id = basecfg(path);
network_predict(net, sized.data);
get_region_boxes(l, 1, 1, thresh, probs, boxes, 1, 0);
if (nms) do_nms(boxes, probs, l.w*l.h*l.n, 1, nms);
char labelpath[4096];
find_replace(path, "images", "labels", labelpath);
find_replace(labelpath, "JPEGImages", "labels", labelpath);
find_replace(labelpath, ".jpg", ".txt", labelpath);
find_replace(labelpath, ".JPEG", ".txt", labelpath);
find_replace(labelpath, ".png", ".txt", labelpath);
int num_labels = 0;
box_label *truth = read_boxes(labelpath, &num_labels);
truth_count += num_labels;
for(k = 0; k < l.w*l.h*l.n; ++k){
if(probs[k][0] > thresh){
++proposals;
}
}
int j, k;
int m = plist->size;
int i = 0;
float thresh = .001;
float iou_thresh = .5;
float nms = .4;
int total = 0;
int correct = 0;
int proposals = 0;
float avg_iou = 0;
for (i = 0; i < m; ++i) {
char *path = paths[i];
image orig = load_image_color(path, 0, 0);
image sized = resize_image(orig, net.w, net.h);
char *id = basecfg(path);
network_predict(net, sized.data);
int nboxes = 0;
int letterbox = 0;
detection *dets = get_network_boxes(&net, sized.w, sized.h, thresh, .5, 0, 1, &nboxes, letterbox);
if (nms) do_nms_obj_v3(dets, nboxes, 1, nms);
char labelpath[4096];
find_replace(path, "images", "labels", labelpath);
find_replace(labelpath, "JPEGImages", "labels", labelpath);
find_replace(labelpath, ".jpg", ".txt", labelpath);
find_replace(labelpath, ".JPEG", ".txt", labelpath);
int num_labels = 0;
box_label *truth = read_boxes(labelpath, &num_labels);
for (k = 0; k < nboxes; ++k) {
if (dets[k].objectness > thresh) {
++proposals;
}
}
for (j = 0; j < num_labels; ++j) {
++total;
box t = { truth[j].x, truth[j].y, truth[j].w, truth[j].h };
float best_iou = 0;
for (k = 0; k < l.w*l.h*l.n; ++k) {
float iou = box_iou(boxes[k], t);
if (probs[k][0] > thresh && iou > best_iou) {
float iou = box_iou(dets[k].bbox, t);
if (dets[k].objectness > thresh && iou > best_iou) {
best_iou = iou;
}
}
avg_iou += best_iou;
if(best_iou > iou_thresh){
++correct;
}
}
avg_iou += best_iou;
if (best_iou > iou_thresh) {
++correct;
}
}
fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals/(i+1), avg_iou*100/total, 100.*correct/total);
free(id);
free_image(orig);
free_image(sized);
}
printf("\n truth_count = %d \n", truth_count);
fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals / (i + 1), avg_iou * 100 / total, 100.*correct / total);
free(id);
free_image(orig);
free_image(sized);
}
}
typedef struct {
@ -537,7 +526,6 @@ void validate_detector_map(char *datacfg, char *cfgfile, char *weightfile, float
load_weights(&net, weightfile);
}
set_batch_network(&net, 1);
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
srand(time(0));
list *plist = get_paths(valid_images);
@ -553,10 +541,6 @@ void validate_detector_map(char *datacfg, char *cfgfile, char *weightfile, float
layer l = net.layers[net.n - 1];
int classes = l.classes;
box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
float **probs = calloc(l.w*l.h*l.n, sizeof(float *));
for (j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));
int m = plist->size;
int i = 0;
int t;
@ -576,6 +560,7 @@ void validate_detector_map(char *datacfg, char *cfgfile, char *weightfile, float
args.w = net.w;
args.h = net.h;
args.type = IMAGE_DATA;
//args.type = LETTERBOX_DATA;
//const float thresh_calc_avg_iou = 0.24;
float avg_iou = 0;
@ -614,8 +599,12 @@ void validate_detector_map(char *datacfg, char *cfgfile, char *weightfile, float
char *id = basecfg(path);
float *X = val_resized[t].data;
network_predict(net, X);
get_region_boxes(l, 1, 1, thresh, probs, boxes, 0, map);
if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, classes, nms);
int nboxes = 0;
int letterbox = (args.type == LETTERBOX_DATA);
float hier_thresh = 0;
detection *dets = get_network_boxes(&net, 1, 1, thresh, hier_thresh, 0, 1, &nboxes, letterbox);
if (nms) do_nms_sort_v3(dets, nboxes, l.classes, nms);
char labelpath[4096];
find_replace(path, "images", "labels", labelpath);
@ -646,15 +635,15 @@ void validate_detector_map(char *datacfg, char *cfgfile, char *weightfile, float
truth_dif = read_boxes(labelpath_dif, &num_labels_dif);
}
for (i = 0; i < (l.w*l.h*l.n); ++i) {
for (i = 0; i < nboxes; ++i) {
int class_id;
for (class_id = 0; class_id < classes; ++class_id) {
float prob = probs[i][class_id];
float prob = dets[i].prob[class_id];
if (prob > 0) {
detections_count++;
detections = realloc(detections, detections_count * sizeof(box_prob));
detections[detections_count - 1].b = boxes[i];
detections[detections_count - 1].b = dets[i].bbox;
detections[detections_count - 1].p = prob;
detections[detections_count - 1].image_index = image_index;
detections[detections_count - 1].class_id = class_id;
@ -667,8 +656,8 @@ void validate_detector_map(char *datacfg, char *cfgfile, char *weightfile, float
{
box t = { truth[j].x, truth[j].y, truth[j].w, truth[j].h };
//printf(" IoU = %f, prob = %f, class_id = %d, truth[j].id = %d \n",
// box_iou(boxes[i], t), prob, class_id, truth[j].id);
float current_iou = box_iou(boxes[i], t);
// box_iou(dets[i].bbox, t), prob, class_id, truth[j].id);
float current_iou = box_iou(dets[i].bbox, t);
if (current_iou > iou_thresh && class_id == truth[j].id) {
if (current_iou > max_iou) {
max_iou = current_iou;
@ -686,7 +675,7 @@ void validate_detector_map(char *datacfg, char *cfgfile, char *weightfile, float
// if object is difficult then remove detection
for (j = 0; j < num_labels_dif; ++j) {
box t = { truth_dif[j].x, truth_dif[j].y, truth_dif[j].w, truth_dif[j].h };
float current_iou = box_iou(boxes[i], t);
float current_iou = box_iou(dets[i].bbox, t);
if (current_iou > iou_thresh && class_id == truth_dif[j].id) {
--detections_count;
break;
@ -709,6 +698,7 @@ void validate_detector_map(char *datacfg, char *cfgfile, char *weightfile, float
unique_truth_count += num_labels;
free_detections(dets, nboxes);
free(id);
free_image(val[t]);
free_image(val_resized[t]);
@ -830,9 +820,9 @@ void validate_detector_map(char *datacfg, char *cfgfile, char *weightfile, float
}
#ifdef OPENCV
void calc_anchors(char *datacfg, int num_of_clusters, int final_width, int final_height, int show)
void calc_anchors(char *datacfg, int num_of_clusters, int width, int height, int show)
{
printf("\n num_of_clusters = %d, final_width = %d, final_height = %d \n", num_of_clusters, final_width, final_height);
printf("\n num_of_clusters = %d, width = %d, height = %d \n", num_of_clusters, width, height);
//float pointsdata[] = { 1,1, 2,2, 6,6, 5,5, 10,10 };
float *rel_width_height_array = calloc(1000, sizeof(float));
@ -862,8 +852,8 @@ void calc_anchors(char *datacfg, int num_of_clusters, int final_width, int final
{
number_of_boxes++;
rel_width_height_array = realloc(rel_width_height_array, 2 * number_of_boxes * sizeof(float));
rel_width_height_array[number_of_boxes * 2 - 2] = truth[j].w * final_width;
rel_width_height_array[number_of_boxes * 2 - 1] = truth[j].h * final_height;
rel_width_height_array[number_of_boxes * 2 - 2] = truth[j].w * width;
rel_width_height_array[number_of_boxes * 2 - 1] = truth[j].h * height;
printf("\r loaded \t image: %d \t box: %d", i+1, number_of_boxes);
}
}
@ -967,15 +957,15 @@ void calc_anchors(char *datacfg, int num_of_clusters, int final_width, int final
for (j = 0; j < num_of_clusters; ++j) {
CvPoint pt1, pt2;
pt1.x = pt1.y = 0;
pt2.x = centers->data.fl[j * 2] * img_size / final_width;
pt2.y = centers->data.fl[j * 2 + 1] * img_size / final_height;
pt2.x = centers->data.fl[j * 2] * img_size / width;
pt2.y = centers->data.fl[j * 2 + 1] * img_size / height;
cvRectangle(img, pt1, pt2, CV_RGB(255, 255, 255), 1, 8, 0);
}
for (i = 0; i < number_of_boxes; ++i) {
CvPoint pt;
pt.x = points->data.fl[i * 2] * img_size / final_width;
pt.y = points->data.fl[i * 2 + 1] * img_size / final_height;
pt.x = points->data.fl[i * 2] * img_size / width;
pt.y = points->data.fl[i * 2 + 1] * img_size / height;
int cluster_idx = labels->data.i[i];
int red_id = (cluster_idx * (uint64_t)123 + 55) % 255;
int green_id = (cluster_idx * (uint64_t)321 + 33) % 255;
@ -995,7 +985,7 @@ void calc_anchors(char *datacfg, int num_of_clusters, int final_width, int final
cvReleaseMat(&labels);
}
#else
void calc_anchors(char *datacfg, int num_of_clusters, int final_width, int final_height, int show) {
void calc_anchors(char *datacfg, int num_of_clusters, int width, int height, int show) {
printf(" k-means++ can't be used without OpenCV, because there is used cvKMeans2 implementation \n");
}
#endif // OPENCV
@ -1030,9 +1020,9 @@ void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filenam
strtok(input, "\n");
}
image im = load_image_color(input,0,0);
int letter = 0;
int letterbox = 0;
image sized = resize_image(im, net.w, net.h);
//image sized = letterbox_image(im, net.w, net.h); letter = 1;
//image sized = letterbox_image(im, net.w, net.h); letterbox = 1;
layer l = net.layers[net.n-1];
//box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
@ -1047,7 +1037,7 @@ void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filenam
// if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, l.classes, nms);
//draw_detections(im, l.w*l.h*l.n, thresh, boxes, probs, names, alphabet, l.classes);
int nboxes = 0;
detection *dets = get_network_boxes(&net, im.w, im.h, thresh, hier_thresh, 0, 1, &nboxes, letter);
detection *dets = get_network_boxes(&net, im.w, im.h, thresh, hier_thresh, 0, 1, &nboxes, letterbox);
if (nms) do_nms_sort_v3(dets, nboxes, l.classes, nms);
draw_detections_v3(im, dets, nboxes, thresh, names, alphabet, l.classes);
free_detections(dets, nboxes);
@ -1076,14 +1066,15 @@ void run_detector(int argc, char **argv)
int show = find_arg(argc, argv, "-show");
int http_stream_port = find_int_arg(argc, argv, "-http_port", -1);
char *out_filename = find_char_arg(argc, argv, "-out_filename", 0);
char *outfile = find_char_arg(argc, argv, "-out", 0);
char *prefix = find_char_arg(argc, argv, "-prefix", 0);
float thresh = find_float_arg(argc, argv, "-thresh", .25); // 0.24
float hier_thresh = find_float_arg(argc, argv, "-hier", .5);
int cam_index = find_int_arg(argc, argv, "-c", 0);
int frame_skip = find_int_arg(argc, argv, "-s", 0);
int num_of_clusters = find_int_arg(argc, argv, "-num_of_clusters", 5);
int final_width = find_int_arg(argc, argv, "-final_width", 13);
int final_heigh = find_int_arg(argc, argv, "-final_heigh", 13);
int width = find_int_arg(argc, argv, "-width", 13);
int heigh = find_int_arg(argc, argv, "-heigh", 13);
if(argc < 4){
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
return;
@ -1121,10 +1112,10 @@ void run_detector(int argc, char **argv)
char *filename = (argc > 6) ? argv[6]: 0;
if(0==strcmp(argv[2], "test")) test_detector(datacfg, cfg, weights, filename, thresh, hier_thresh, dont_show);
else if(0==strcmp(argv[2], "train")) train_detector(datacfg, cfg, weights, gpus, ngpus, clear, dont_show);
else if(0==strcmp(argv[2], "valid")) validate_detector(datacfg, cfg, weights);
else if(0==strcmp(argv[2], "valid")) validate_detector(datacfg, cfg, weights, outfile);
else if(0==strcmp(argv[2], "recall")) validate_detector_recall(datacfg, cfg, weights);
else if(0==strcmp(argv[2], "map")) validate_detector_map(datacfg, cfg, weights, thresh);
else if(0==strcmp(argv[2], "calc_anchors")) calc_anchors(datacfg, num_of_clusters, final_width, final_heigh, show);
else if(0==strcmp(argv[2], "calc_anchors")) calc_anchors(datacfg, num_of_clusters, width, heigh, show);
else if(0==strcmp(argv[2], "demo")) {
list *options = read_data_cfg(datacfg);
int classes = option_find_int(options, "classes", 20);

@ -374,10 +374,14 @@ int resize_network(network *net, int w, int h)
resize_maxpool_layer(&l, w, h);
}else if(l.type == REGION){
resize_region_layer(&l, w, h);
}else if (l.type == YOLO) {
resize_yolo_layer(&l, w, h);
}else if(l.type == ROUTE){
resize_route_layer(&l, net);
}else if (l.type == SHORTCUT) {
resize_shortcut_layer(&l, w, h);
}else if (l.type == UPSAMPLE) {
resize_upsample_layer(&l, w, h);
}else if(l.type == REORG){
resize_reorg_layer(&l, w, h);
}else if(l.type == AVGPOOL){
@ -539,12 +543,14 @@ void custom_get_region_detections(layer l, int w, int h, int net_w, int net_h, f
float **probs = calloc(l.w*l.h*l.n, sizeof(float *));
int i, j;
for (j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float *));
get_region_boxes(l, 1, 1, thresh, probs, boxes, 0, map);
get_region_boxes(l, w, h, thresh, probs, boxes, 0, map);
for (j = 0; j < l.w*l.h*l.n; ++j) {
dets[j].classes = l.classes;
dets[j].bbox = boxes[j];
dets[j].objectness = 1;
for (i = 0; i < l.classes; ++i) dets[j].prob[i] = probs[j][i];
for (i = 0; i < l.classes; ++i) {
dets[j].prob[i] = probs[j][i];
}
}
free(boxes);

@ -378,9 +378,26 @@ void forward_yolo_layer_gpu(const layer l, network_state state)
return;
}
cuda_pull_array(l.output_gpu, state.input, l.batch*l.inputs);
forward_yolo_layer(l, state);
//cuda_pull_array(l.output_gpu, state.input, l.batch*l.inputs);
float *in_cpu = calloc(l.batch*l.inputs, sizeof(float));
cuda_pull_array(l.output_gpu, in_cpu, l.batch*l.inputs);
float *truth_cpu = 0;
if (state.truth) {
int num_truth = l.batch*l.truths;
truth_cpu = calloc(num_truth, sizeof(float));
cuda_pull_array(state.truth, truth_cpu, num_truth);
}
network_state cpu_state = state;
cpu_state.net = state.net;
cpu_state.index = state.index;
cpu_state.train = state.train;
cpu_state.truth = truth_cpu;
cpu_state.input = in_cpu;
forward_yolo_layer(l, cpu_state);
//forward_yolo_layer(l, state);
cuda_push_array(l.delta_gpu, l.delta, l.batch*l.outputs);
free(in_cpu);
if (cpu_state.truth) free(cpu_state.truth);
}
void backward_yolo_layer_gpu(const layer l, network_state state)

Loading…
Cancel
Save