|
|
|
@ -170,7 +170,7 @@ void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, i |
|
|
|
|
avg_loss = avg_loss*.9 + loss*.1; |
|
|
|
|
|
|
|
|
|
i = get_current_batch(net); |
|
|
|
|
printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs); |
|
|
|
|
printf("\n %d: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs); |
|
|
|
|
|
|
|
|
|
#ifdef OPENCV |
|
|
|
|
if(!dont_show) |
|
|
|
@ -204,19 +204,21 @@ void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, i |
|
|
|
|
|
|
|
|
|
static int get_coco_image_id(char *filename) |
|
|
|
|
{ |
|
|
|
|
char *p = strrchr(filename, '_'); |
|
|
|
|
char *p = strrchr(filename, '/'); |
|
|
|
|
char *c = strrchr(filename, '_'); |
|
|
|
|
if (c) p = c; |
|
|
|
|
return atoi(p + 1); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
static void print_cocos(FILE *fp, char *image_path, box *boxes, float **probs, int num_boxes, int classes, int w, int h) |
|
|
|
|
static void print_cocos(FILE *fp, char *image_path, detection *dets, int num_boxes, int classes, int w, int h) |
|
|
|
|
{ |
|
|
|
|
int i, j; |
|
|
|
|
int image_id = get_coco_image_id(image_path); |
|
|
|
|
for (i = 0; i < num_boxes; ++i) { |
|
|
|
|
float xmin = boxes[i].x - boxes[i].w/2.; |
|
|
|
|
float xmax = boxes[i].x + boxes[i].w/2.; |
|
|
|
|
float ymin = boxes[i].y - boxes[i].h/2.; |
|
|
|
|
float ymax = boxes[i].y + boxes[i].h/2.; |
|
|
|
|
float xmin = dets[i].bbox.x - dets[i].bbox.w / 2.; |
|
|
|
|
float xmax = dets[i].bbox.x + dets[i].bbox.w / 2.; |
|
|
|
|
float ymin = dets[i].bbox.y - dets[i].bbox.h / 2.; |
|
|
|
|
float ymax = dets[i].bbox.y + dets[i].bbox.h / 2.; |
|
|
|
|
|
|
|
|
|
if (xmin < 0) xmin = 0; |
|
|
|
|
if (ymin < 0) ymin = 0; |
|
|
|
@ -229,40 +231,40 @@ static void print_cocos(FILE *fp, char *image_path, box *boxes, float **probs, i |
|
|
|
|
float bh = ymax - ymin; |
|
|
|
|
|
|
|
|
|
for (j = 0; j < classes; ++j) { |
|
|
|
|
if (probs[i][j]) fprintf(fp, "{\"image_id\":%d, \"category_id\":%d, \"bbox\":[%f, %f, %f, %f], \"score\":%f},\n", image_id, coco_ids[j], bx, by, bw, bh, probs[i][j]); |
|
|
|
|
if (dets[i].prob[j]) fprintf(fp, "{\"image_id\":%d, \"category_id\":%d, \"bbox\":[%f, %f, %f, %f], \"score\":%f},\n", image_id, coco_ids[j], bx, by, bw, bh, dets[i].prob[j]); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void print_detector_detections(FILE **fps, char *id, box *boxes, float **probs, int total, int classes, int w, int h) |
|
|
|
|
void print_detector_detections(FILE **fps, char *id, detection *dets, int total, int classes, int w, int h) |
|
|
|
|
{ |
|
|
|
|
int i, j; |
|
|
|
|
for (i = 0; i < total; ++i) { |
|
|
|
|
float xmin = boxes[i].x - boxes[i].w/2.; |
|
|
|
|
float xmax = boxes[i].x + boxes[i].w/2.; |
|
|
|
|
float ymin = boxes[i].y - boxes[i].h/2.; |
|
|
|
|
float ymax = boxes[i].y + boxes[i].h/2.; |
|
|
|
|
float xmin = dets[i].bbox.x - dets[i].bbox.w / 2. + 1; |
|
|
|
|
float xmax = dets[i].bbox.x + dets[i].bbox.w / 2. + 1; |
|
|
|
|
float ymin = dets[i].bbox.y - dets[i].bbox.h / 2. + 1; |
|
|
|
|
float ymax = dets[i].bbox.y + dets[i].bbox.h / 2. + 1; |
|
|
|
|
|
|
|
|
|
if (xmin < 0) xmin = 0; |
|
|
|
|
if (ymin < 0) ymin = 0; |
|
|
|
|
if (xmin < 1) xmin = 1; |
|
|
|
|
if (ymin < 1) ymin = 1; |
|
|
|
|
if (xmax > w) xmax = w; |
|
|
|
|
if (ymax > h) ymax = h; |
|
|
|
|
|
|
|
|
|
for (j = 0; j < classes; ++j) { |
|
|
|
|
if (probs[i][j]) fprintf(fps[j], "%s %f %f %f %f %f\n", id, probs[i][j], |
|
|
|
|
if (dets[i].prob[j]) fprintf(fps[j], "%s %f %f %f %f %f\n", id, dets[i].prob[j], |
|
|
|
|
xmin, ymin, xmax, ymax); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void print_imagenet_detections(FILE *fp, int id, box *boxes, float **probs, int total, int classes, int w, int h) |
|
|
|
|
void print_imagenet_detections(FILE *fp, int id, detection *dets, int total, int classes, int w, int h) |
|
|
|
|
{ |
|
|
|
|
int i, j; |
|
|
|
|
for (i = 0; i < total; ++i) { |
|
|
|
|
float xmin = boxes[i].x - boxes[i].w/2.; |
|
|
|
|
float xmax = boxes[i].x + boxes[i].w/2.; |
|
|
|
|
float ymin = boxes[i].y - boxes[i].h/2.; |
|
|
|
|
float ymax = boxes[i].y + boxes[i].h/2.; |
|
|
|
|
float xmin = dets[i].bbox.x - dets[i].bbox.w / 2.; |
|
|
|
|
float xmax = dets[i].bbox.x + dets[i].bbox.w / 2.; |
|
|
|
|
float ymin = dets[i].bbox.y - dets[i].bbox.h / 2.; |
|
|
|
|
float ymax = dets[i].bbox.y + dets[i].bbox.h / 2.; |
|
|
|
|
|
|
|
|
|
if (xmin < 0) xmin = 0; |
|
|
|
|
if (ymin < 0) ymin = 0; |
|
|
|
@ -270,14 +272,14 @@ void print_imagenet_detections(FILE *fp, int id, box *boxes, float **probs, int |
|
|
|
|
if (ymax > h) ymax = h; |
|
|
|
|
|
|
|
|
|
for (j = 0; j < classes; ++j) { |
|
|
|
|
int class_id = j; |
|
|
|
|
if (probs[i][class_id]) fprintf(fp, "%d %d %f %f %f %f %f\n", id, j+1, probs[i][class_id], |
|
|
|
|
int class = j; |
|
|
|
|
if (dets[i].prob[class]) fprintf(fp, "%d %d %f %f %f %f %f\n", id, j + 1, dets[i].prob[class], |
|
|
|
|
xmin, ymin, xmax, ymax); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void validate_detector(char *datacfg, char *cfgfile, char *weightfile) |
|
|
|
|
void validate_detector(char *datacfg, char *cfgfile, char *weightfile, char *outfile) |
|
|
|
|
{ |
|
|
|
|
int j; |
|
|
|
|
list *options = read_data_cfg(datacfg); |
|
|
|
@ -297,7 +299,6 @@ void validate_detector(char *datacfg, char *cfgfile, char *weightfile) |
|
|
|
|
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
|
|
|
|
srand(time(0)); |
|
|
|
|
|
|
|
|
|
char *base = "comp4_det_test_"; |
|
|
|
|
list *plist = get_paths(valid_images); |
|
|
|
|
char **paths = (char **)list_to_array(plist); |
|
|
|
|
|
|
|
|
@ -311,28 +312,29 @@ void validate_detector(char *datacfg, char *cfgfile, char *weightfile) |
|
|
|
|
int coco = 0; |
|
|
|
|
int imagenet = 0; |
|
|
|
|
if (0 == strcmp(type, "coco")) { |
|
|
|
|
snprintf(buff, 1024, "%s/coco_results.json", prefix); |
|
|
|
|
if (!outfile) outfile = "coco_results"; |
|
|
|
|
snprintf(buff, 1024, "%s/%s.json", prefix, outfile); |
|
|
|
|
fp = fopen(buff, "w"); |
|
|
|
|
fprintf(fp, "[\n"); |
|
|
|
|
coco = 1; |
|
|
|
|
} else if(0==strcmp(type, "imagenet")){ |
|
|
|
|
snprintf(buff, 1024, "%s/imagenet-detection.txt", prefix); |
|
|
|
|
} |
|
|
|
|
else if (0 == strcmp(type, "imagenet")) { |
|
|
|
|
if (!outfile) outfile = "imagenet-detection"; |
|
|
|
|
snprintf(buff, 1024, "%s/%s.txt", prefix, outfile); |
|
|
|
|
fp = fopen(buff, "w"); |
|
|
|
|
imagenet = 1; |
|
|
|
|
classes = 200; |
|
|
|
|
} else { |
|
|
|
|
} |
|
|
|
|
else { |
|
|
|
|
if (!outfile) outfile = "comp4_det_test_"; |
|
|
|
|
fps = calloc(classes, sizeof(FILE *)); |
|
|
|
|
for (j = 0; j < classes; ++j) { |
|
|
|
|
snprintf(buff, 1024, "%s/%s%s.txt", prefix, base, names[j]); |
|
|
|
|
snprintf(buff, 1024, "%s/%s%s.txt", prefix, outfile, names[j]); |
|
|
|
|
fps[j] = fopen(buff, "w"); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
box *boxes = calloc(l.w*l.h*l.n, sizeof(box)); |
|
|
|
|
float **probs = calloc(l.w*l.h*l.n, sizeof(float *)); |
|
|
|
|
for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(classes, sizeof(float *)); |
|
|
|
|
|
|
|
|
|
int m = plist->size; |
|
|
|
|
int i = 0; |
|
|
|
|
int t; |
|
|
|
@ -340,8 +342,6 @@ void validate_detector(char *datacfg, char *cfgfile, char *weightfile) |
|
|
|
|
float thresh = .005; |
|
|
|
|
float nms = .45; |
|
|
|
|
|
|
|
|
|
int detection_count = 0; |
|
|
|
|
|
|
|
|
|
int nthreads = 4; |
|
|
|
|
image *val = calloc(nthreads, sizeof(image)); |
|
|
|
|
image *val_resized = calloc(nthreads, sizeof(image)); |
|
|
|
@ -353,6 +353,7 @@ void validate_detector(char *datacfg, char *cfgfile, char *weightfile) |
|
|
|
|
args.w = net.w; |
|
|
|
|
args.h = net.h; |
|
|
|
|
args.type = IMAGE_DATA; |
|
|
|
|
//args.type = LETTERBOX_DATA;
|
|
|
|
|
|
|
|
|
|
for (t = 0; t < nthreads; ++t) { |
|
|
|
|
args.path = paths[i + t]; |
|
|
|
@ -381,24 +382,20 @@ void validate_detector(char *datacfg, char *cfgfile, char *weightfile) |
|
|
|
|
network_predict(net, X); |
|
|
|
|
int w = val[t].w; |
|
|
|
|
int h = val[t].h; |
|
|
|
|
get_region_boxes(l, w, h, thresh, probs, boxes, 0, map); |
|
|
|
|
if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, classes, nms); |
|
|
|
|
|
|
|
|
|
int x, y; |
|
|
|
|
for (x = 0; x < (l.w*l.h*l.n); ++x) { |
|
|
|
|
for (y = 0; y < classes; ++y)
|
|
|
|
|
{ |
|
|
|
|
if (probs[x][y]) ++detection_count; |
|
|
|
|
int nboxes = 0; |
|
|
|
|
int letterbox = (args.type == LETTERBOX_DATA); |
|
|
|
|
detection *dets = get_network_boxes(&net, w, h, thresh, .5, map, 0, &nboxes, letterbox); |
|
|
|
|
if (nms) do_nms_sort_v3(dets, nboxes, classes, nms); |
|
|
|
|
if (coco) { |
|
|
|
|
print_cocos(fp, path, dets, nboxes, classes, w, h); |
|
|
|
|
} |
|
|
|
|
else if (imagenet) { |
|
|
|
|
print_imagenet_detections(fp, i + t - nthreads + 1, dets, nboxes, classes, w, h); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (coco){ |
|
|
|
|
print_cocos(fp, path, boxes, probs, l.w*l.h*l.n, classes, w, h); |
|
|
|
|
} else if (imagenet){ |
|
|
|
|
print_imagenet_detections(fp, i+t-nthreads+1, boxes, probs, l.w*l.h*l.n, classes, w, h); |
|
|
|
|
} else { |
|
|
|
|
print_detector_detections(fps, id, boxes, probs, l.w*l.h*l.n, classes, w, h); |
|
|
|
|
else { |
|
|
|
|
print_detector_detections(fps, id, dets, nboxes, classes, w, h); |
|
|
|
|
} |
|
|
|
|
free_detections(dets, nboxes); |
|
|
|
|
free(id); |
|
|
|
|
free_image(val[t]); |
|
|
|
|
free_image(val_resized[t]); |
|
|
|
@ -412,8 +409,7 @@ void validate_detector(char *datacfg, char *cfgfile, char *weightfile) |
|
|
|
|
fprintf(fp, "\n]\n"); |
|
|
|
|
fclose(fp); |
|
|
|
|
} |
|
|
|
|
printf("\n detection_count = %d \n", detection_count); |
|
|
|
|
fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start)); |
|
|
|
|
fprintf(stderr, "Total Detection Time: %f Seconds\n", time(0) - start); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void validate_detector_recall(char *datacfg, char *cfgfile, char *weightfile) |
|
|
|
@ -423,31 +419,25 @@ void validate_detector_recall(char *datacfg, char *cfgfile, char *weightfile) |
|
|
|
|
load_weights(&net, weightfile); |
|
|
|
|
} |
|
|
|
|
set_batch_network(&net, 1); |
|
|
|
|
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
|
|
|
|
srand(time(0)); |
|
|
|
|
|
|
|
|
|
//list *plist = get_paths("data/coco_val_5k.list");
|
|
|
|
|
list *options = read_data_cfg(datacfg); |
|
|
|
|
char *valid_images = option_find_str(options, "valid", "data/train.txt"); |
|
|
|
|
list *plist = get_paths(valid_images); |
|
|
|
|
char **paths = (char **)list_to_array(plist); |
|
|
|
|
|
|
|
|
|
layer l = net.layers[net.n - 1]; |
|
|
|
|
int classes = l.classes; |
|
|
|
|
|
|
|
|
|
int j, k; |
|
|
|
|
box *boxes = calloc(l.w*l.h*l.n, sizeof(box)); |
|
|
|
|
float **probs = calloc(l.w*l.h*l.n, sizeof(float *)); |
|
|
|
|
for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(classes, sizeof(float *)); |
|
|
|
|
|
|
|
|
|
int m = plist->size; |
|
|
|
|
int i = 0; |
|
|
|
|
|
|
|
|
|
float thresh = .001;// .001; // .2;
|
|
|
|
|
float thresh = .001; |
|
|
|
|
float iou_thresh = .5; |
|
|
|
|
float nms = .4; |
|
|
|
|
|
|
|
|
|
int detection_count = 0, truth_count = 0; |
|
|
|
|
|
|
|
|
|
int total = 0; |
|
|
|
|
int correct = 0; |
|
|
|
|
int proposals = 0; |
|
|
|
@ -459,21 +449,21 @@ void validate_detector_recall(char *datacfg, char *cfgfile, char *weightfile) |
|
|
|
|
image sized = resize_image(orig, net.w, net.h); |
|
|
|
|
char *id = basecfg(path); |
|
|
|
|
network_predict(net, sized.data); |
|
|
|
|
get_region_boxes(l, 1, 1, thresh, probs, boxes, 1, 0); |
|
|
|
|
if (nms) do_nms(boxes, probs, l.w*l.h*l.n, 1, nms); |
|
|
|
|
int nboxes = 0; |
|
|
|
|
int letterbox = 0; |
|
|
|
|
detection *dets = get_network_boxes(&net, sized.w, sized.h, thresh, .5, 0, 1, &nboxes, letterbox); |
|
|
|
|
if (nms) do_nms_obj_v3(dets, nboxes, 1, nms); |
|
|
|
|
|
|
|
|
|
char labelpath[4096]; |
|
|
|
|
find_replace(path, "images", "labels", labelpath); |
|
|
|
|
find_replace(labelpath, "JPEGImages", "labels", labelpath); |
|
|
|
|
find_replace(labelpath, ".jpg", ".txt", labelpath); |
|
|
|
|
find_replace(labelpath, ".JPEG", ".txt", labelpath); |
|
|
|
|
find_replace(labelpath, ".png", ".txt", labelpath); |
|
|
|
|
|
|
|
|
|
int num_labels = 0; |
|
|
|
|
box_label *truth = read_boxes(labelpath, &num_labels); |
|
|
|
|
truth_count += num_labels; |
|
|
|
|
for(k = 0; k < l.w*l.h*l.n; ++k){ |
|
|
|
|
if(probs[k][0] > thresh){ |
|
|
|
|
for (k = 0; k < nboxes; ++k) { |
|
|
|
|
if (dets[k].objectness > thresh) { |
|
|
|
|
++proposals; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
@ -482,8 +472,8 @@ void validate_detector_recall(char *datacfg, char *cfgfile, char *weightfile) |
|
|
|
|
box t = { truth[j].x, truth[j].y, truth[j].w, truth[j].h }; |
|
|
|
|
float best_iou = 0; |
|
|
|
|
for (k = 0; k < l.w*l.h*l.n; ++k) { |
|
|
|
|
float iou = box_iou(boxes[k], t); |
|
|
|
|
if (probs[k][0] > thresh && iou > best_iou) { |
|
|
|
|
float iou = box_iou(dets[k].bbox, t); |
|
|
|
|
if (dets[k].objectness > thresh && iou > best_iou) { |
|
|
|
|
best_iou = iou; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
@ -498,7 +488,6 @@ void validate_detector_recall(char *datacfg, char *cfgfile, char *weightfile) |
|
|
|
|
free_image(orig); |
|
|
|
|
free_image(sized); |
|
|
|
|
} |
|
|
|
|
printf("\n truth_count = %d \n", truth_count); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
typedef struct { |
|
|
|
@ -537,7 +526,6 @@ void validate_detector_map(char *datacfg, char *cfgfile, char *weightfile, float |
|
|
|
|
load_weights(&net, weightfile); |
|
|
|
|
} |
|
|
|
|
set_batch_network(&net, 1); |
|
|
|
|
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
|
|
|
|
srand(time(0)); |
|
|
|
|
|
|
|
|
|
list *plist = get_paths(valid_images); |
|
|
|
@ -553,10 +541,6 @@ void validate_detector_map(char *datacfg, char *cfgfile, char *weightfile, float |
|
|
|
|
layer l = net.layers[net.n - 1]; |
|
|
|
|
int classes = l.classes; |
|
|
|
|
|
|
|
|
|
box *boxes = calloc(l.w*l.h*l.n, sizeof(box)); |
|
|
|
|
float **probs = calloc(l.w*l.h*l.n, sizeof(float *)); |
|
|
|
|
for (j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(classes, sizeof(float *)); |
|
|
|
|
|
|
|
|
|
int m = plist->size; |
|
|
|
|
int i = 0; |
|
|
|
|
int t; |
|
|
|
@ -576,6 +560,7 @@ void validate_detector_map(char *datacfg, char *cfgfile, char *weightfile, float |
|
|
|
|
args.w = net.w; |
|
|
|
|
args.h = net.h; |
|
|
|
|
args.type = IMAGE_DATA; |
|
|
|
|
//args.type = LETTERBOX_DATA;
|
|
|
|
|
|
|
|
|
|
//const float thresh_calc_avg_iou = 0.24;
|
|
|
|
|
float avg_iou = 0; |
|
|
|
@ -614,8 +599,12 @@ void validate_detector_map(char *datacfg, char *cfgfile, char *weightfile, float |
|
|
|
|
char *id = basecfg(path); |
|
|
|
|
float *X = val_resized[t].data; |
|
|
|
|
network_predict(net, X); |
|
|
|
|
get_region_boxes(l, 1, 1, thresh, probs, boxes, 0, map); |
|
|
|
|
if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, classes, nms); |
|
|
|
|
|
|
|
|
|
int nboxes = 0; |
|
|
|
|
int letterbox = (args.type == LETTERBOX_DATA); |
|
|
|
|
float hier_thresh = 0; |
|
|
|
|
detection *dets = get_network_boxes(&net, 1, 1, thresh, hier_thresh, 0, 1, &nboxes, letterbox); |
|
|
|
|
if (nms) do_nms_sort_v3(dets, nboxes, l.classes, nms); |
|
|
|
|
|
|
|
|
|
char labelpath[4096]; |
|
|
|
|
find_replace(path, "images", "labels", labelpath); |
|
|
|
@ -646,15 +635,15 @@ void validate_detector_map(char *datacfg, char *cfgfile, char *weightfile, float |
|
|
|
|
truth_dif = read_boxes(labelpath_dif, &num_labels_dif); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
for (i = 0; i < (l.w*l.h*l.n); ++i) { |
|
|
|
|
for (i = 0; i < nboxes; ++i) { |
|
|
|
|
|
|
|
|
|
int class_id; |
|
|
|
|
for (class_id = 0; class_id < classes; ++class_id) { |
|
|
|
|
float prob = probs[i][class_id]; |
|
|
|
|
float prob = dets[i].prob[class_id]; |
|
|
|
|
if (prob > 0) { |
|
|
|
|
detections_count++; |
|
|
|
|
detections = realloc(detections, detections_count * sizeof(box_prob)); |
|
|
|
|
detections[detections_count - 1].b = boxes[i]; |
|
|
|
|
detections[detections_count - 1].b = dets[i].bbox; |
|
|
|
|
detections[detections_count - 1].p = prob; |
|
|
|
|
detections[detections_count - 1].image_index = image_index; |
|
|
|
|
detections[detections_count - 1].class_id = class_id; |
|
|
|
@ -667,8 +656,8 @@ void validate_detector_map(char *datacfg, char *cfgfile, char *weightfile, float |
|
|
|
|
{ |
|
|
|
|
box t = { truth[j].x, truth[j].y, truth[j].w, truth[j].h }; |
|
|
|
|
//printf(" IoU = %f, prob = %f, class_id = %d, truth[j].id = %d \n",
|
|
|
|
|
// box_iou(boxes[i], t), prob, class_id, truth[j].id);
|
|
|
|
|
float current_iou = box_iou(boxes[i], t); |
|
|
|
|
// box_iou(dets[i].bbox, t), prob, class_id, truth[j].id);
|
|
|
|
|
float current_iou = box_iou(dets[i].bbox, t); |
|
|
|
|
if (current_iou > iou_thresh && class_id == truth[j].id) { |
|
|
|
|
if (current_iou > max_iou) { |
|
|
|
|
max_iou = current_iou; |
|
|
|
@ -686,7 +675,7 @@ void validate_detector_map(char *datacfg, char *cfgfile, char *weightfile, float |
|
|
|
|
// if object is difficult then remove detection
|
|
|
|
|
for (j = 0; j < num_labels_dif; ++j) { |
|
|
|
|
box t = { truth_dif[j].x, truth_dif[j].y, truth_dif[j].w, truth_dif[j].h }; |
|
|
|
|
float current_iou = box_iou(boxes[i], t); |
|
|
|
|
float current_iou = box_iou(dets[i].bbox, t); |
|
|
|
|
if (current_iou > iou_thresh && class_id == truth_dif[j].id) { |
|
|
|
|
--detections_count; |
|
|
|
|
break; |
|
|
|
@ -709,6 +698,7 @@ void validate_detector_map(char *datacfg, char *cfgfile, char *weightfile, float |
|
|
|
|
|
|
|
|
|
unique_truth_count += num_labels; |
|
|
|
|
|
|
|
|
|
free_detections(dets, nboxes); |
|
|
|
|
free(id); |
|
|
|
|
free_image(val[t]); |
|
|
|
|
free_image(val_resized[t]); |
|
|
|
@ -830,9 +820,9 @@ void validate_detector_map(char *datacfg, char *cfgfile, char *weightfile, float |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#ifdef OPENCV |
|
|
|
|
void calc_anchors(char *datacfg, int num_of_clusters, int final_width, int final_height, int show) |
|
|
|
|
void calc_anchors(char *datacfg, int num_of_clusters, int width, int height, int show) |
|
|
|
|
{ |
|
|
|
|
printf("\n num_of_clusters = %d, final_width = %d, final_height = %d \n", num_of_clusters, final_width, final_height); |
|
|
|
|
printf("\n num_of_clusters = %d, width = %d, height = %d \n", num_of_clusters, width, height); |
|
|
|
|
|
|
|
|
|
//float pointsdata[] = { 1,1, 2,2, 6,6, 5,5, 10,10 };
|
|
|
|
|
float *rel_width_height_array = calloc(1000, sizeof(float)); |
|
|
|
@ -862,8 +852,8 @@ void calc_anchors(char *datacfg, int num_of_clusters, int final_width, int final |
|
|
|
|
{ |
|
|
|
|
number_of_boxes++; |
|
|
|
|
rel_width_height_array = realloc(rel_width_height_array, 2 * number_of_boxes * sizeof(float)); |
|
|
|
|
rel_width_height_array[number_of_boxes * 2 - 2] = truth[j].w * final_width; |
|
|
|
|
rel_width_height_array[number_of_boxes * 2 - 1] = truth[j].h * final_height; |
|
|
|
|
rel_width_height_array[number_of_boxes * 2 - 2] = truth[j].w * width; |
|
|
|
|
rel_width_height_array[number_of_boxes * 2 - 1] = truth[j].h * height; |
|
|
|
|
printf("\r loaded \t image: %d \t box: %d", i+1, number_of_boxes); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
@ -967,15 +957,15 @@ void calc_anchors(char *datacfg, int num_of_clusters, int final_width, int final |
|
|
|
|
for (j = 0; j < num_of_clusters; ++j) { |
|
|
|
|
CvPoint pt1, pt2; |
|
|
|
|
pt1.x = pt1.y = 0; |
|
|
|
|
pt2.x = centers->data.fl[j * 2] * img_size / final_width; |
|
|
|
|
pt2.y = centers->data.fl[j * 2 + 1] * img_size / final_height; |
|
|
|
|
pt2.x = centers->data.fl[j * 2] * img_size / width; |
|
|
|
|
pt2.y = centers->data.fl[j * 2 + 1] * img_size / height; |
|
|
|
|
cvRectangle(img, pt1, pt2, CV_RGB(255, 255, 255), 1, 8, 0); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
for (i = 0; i < number_of_boxes; ++i) { |
|
|
|
|
CvPoint pt; |
|
|
|
|
pt.x = points->data.fl[i * 2] * img_size / final_width; |
|
|
|
|
pt.y = points->data.fl[i * 2 + 1] * img_size / final_height; |
|
|
|
|
pt.x = points->data.fl[i * 2] * img_size / width; |
|
|
|
|
pt.y = points->data.fl[i * 2 + 1] * img_size / height; |
|
|
|
|
int cluster_idx = labels->data.i[i]; |
|
|
|
|
int red_id = (cluster_idx * (uint64_t)123 + 55) % 255; |
|
|
|
|
int green_id = (cluster_idx * (uint64_t)321 + 33) % 255; |
|
|
|
@ -995,7 +985,7 @@ void calc_anchors(char *datacfg, int num_of_clusters, int final_width, int final |
|
|
|
|
cvReleaseMat(&labels); |
|
|
|
|
} |
|
|
|
|
#else |
|
|
|
|
void calc_anchors(char *datacfg, int num_of_clusters, int final_width, int final_height, int show) { |
|
|
|
|
void calc_anchors(char *datacfg, int num_of_clusters, int width, int height, int show) { |
|
|
|
|
printf(" k-means++ can't be used without OpenCV, because there is used cvKMeans2 implementation \n"); |
|
|
|
|
} |
|
|
|
|
#endif // OPENCV
|
|
|
|
@ -1030,9 +1020,9 @@ void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filenam |
|
|
|
|
strtok(input, "\n"); |
|
|
|
|
} |
|
|
|
|
image im = load_image_color(input,0,0); |
|
|
|
|
int letter = 0; |
|
|
|
|
int letterbox = 0; |
|
|
|
|
image sized = resize_image(im, net.w, net.h); |
|
|
|
|
//image sized = letterbox_image(im, net.w, net.h); letter = 1;
|
|
|
|
|
//image sized = letterbox_image(im, net.w, net.h); letterbox = 1;
|
|
|
|
|
layer l = net.layers[net.n-1]; |
|
|
|
|
|
|
|
|
|
//box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
|
|
|
|
@ -1047,7 +1037,7 @@ void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filenam |
|
|
|
|
// if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, l.classes, nms);
|
|
|
|
|
//draw_detections(im, l.w*l.h*l.n, thresh, boxes, probs, names, alphabet, l.classes);
|
|
|
|
|
int nboxes = 0; |
|
|
|
|
detection *dets = get_network_boxes(&net, im.w, im.h, thresh, hier_thresh, 0, 1, &nboxes, letter); |
|
|
|
|
detection *dets = get_network_boxes(&net, im.w, im.h, thresh, hier_thresh, 0, 1, &nboxes, letterbox); |
|
|
|
|
if (nms) do_nms_sort_v3(dets, nboxes, l.classes, nms); |
|
|
|
|
draw_detections_v3(im, dets, nboxes, thresh, names, alphabet, l.classes); |
|
|
|
|
free_detections(dets, nboxes); |
|
|
|
@ -1076,14 +1066,15 @@ void run_detector(int argc, char **argv) |
|
|
|
|
int show = find_arg(argc, argv, "-show"); |
|
|
|
|
int http_stream_port = find_int_arg(argc, argv, "-http_port", -1); |
|
|
|
|
char *out_filename = find_char_arg(argc, argv, "-out_filename", 0); |
|
|
|
|
char *outfile = find_char_arg(argc, argv, "-out", 0); |
|
|
|
|
char *prefix = find_char_arg(argc, argv, "-prefix", 0); |
|
|
|
|
float thresh = find_float_arg(argc, argv, "-thresh", .25); // 0.24
|
|
|
|
|
float hier_thresh = find_float_arg(argc, argv, "-hier", .5); |
|
|
|
|
int cam_index = find_int_arg(argc, argv, "-c", 0); |
|
|
|
|
int frame_skip = find_int_arg(argc, argv, "-s", 0); |
|
|
|
|
int num_of_clusters = find_int_arg(argc, argv, "-num_of_clusters", 5); |
|
|
|
|
int final_width = find_int_arg(argc, argv, "-final_width", 13); |
|
|
|
|
int final_heigh = find_int_arg(argc, argv, "-final_heigh", 13); |
|
|
|
|
int width = find_int_arg(argc, argv, "-width", 13); |
|
|
|
|
int heigh = find_int_arg(argc, argv, "-heigh", 13); |
|
|
|
|
if(argc < 4){ |
|
|
|
|
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); |
|
|
|
|
return; |
|
|
|
@ -1121,10 +1112,10 @@ void run_detector(int argc, char **argv) |
|
|
|
|
char *filename = (argc > 6) ? argv[6]: 0; |
|
|
|
|
if(0==strcmp(argv[2], "test")) test_detector(datacfg, cfg, weights, filename, thresh, hier_thresh, dont_show); |
|
|
|
|
else if(0==strcmp(argv[2], "train")) train_detector(datacfg, cfg, weights, gpus, ngpus, clear, dont_show); |
|
|
|
|
else if(0==strcmp(argv[2], "valid")) validate_detector(datacfg, cfg, weights); |
|
|
|
|
else if(0==strcmp(argv[2], "valid")) validate_detector(datacfg, cfg, weights, outfile); |
|
|
|
|
else if(0==strcmp(argv[2], "recall")) validate_detector_recall(datacfg, cfg, weights); |
|
|
|
|
else if(0==strcmp(argv[2], "map")) validate_detector_map(datacfg, cfg, weights, thresh); |
|
|
|
|
else if(0==strcmp(argv[2], "calc_anchors")) calc_anchors(datacfg, num_of_clusters, final_width, final_heigh, show); |
|
|
|
|
else if(0==strcmp(argv[2], "calc_anchors")) calc_anchors(datacfg, num_of_clusters, width, heigh, show); |
|
|
|
|
else if(0==strcmp(argv[2], "demo")) { |
|
|
|
|
list *options = read_data_cfg(datacfg); |
|
|
|
|
int classes = option_find_int(options, "classes", 20); |
|
|
|
|