|
|
|
@ -81,9 +81,9 @@ void train_detection(char *cfgfile, char *weightfile) |
|
|
|
|
if (imgnet){ |
|
|
|
|
plist = get_paths("/home/pjreddie/data/imagenet/det.train.list"); |
|
|
|
|
}else{ |
|
|
|
|
plist = get_paths("/home/pjreddie/data/voc/trainall.txt"); |
|
|
|
|
//plist = get_paths("/home/pjreddie/data/voc/trainall.txt");
|
|
|
|
|
//plist = get_paths("/home/pjreddie/data/coco/trainval.txt");
|
|
|
|
|
//plist = get_paths("/home/pjreddie/data/voc/all2007-2012.txt");
|
|
|
|
|
plist = get_paths("/home/pjreddie/data/voc/all2007-2012.txt"); |
|
|
|
|
} |
|
|
|
|
paths = (char **)list_to_array(plist); |
|
|
|
|
pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer); |
|
|
|
@ -118,6 +118,34 @@ void train_detection(char *cfgfile, char *weightfile) |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void predict_detections(network net, data d, float threshold, int offset, int classes, int nuisance, int background, int num_boxes, int per_box) |
|
|
|
|
{ |
|
|
|
|
matrix pred = network_predict_data(net, d); |
|
|
|
|
int j, k, class; |
|
|
|
|
for(j = 0; j < pred.rows; ++j){ |
|
|
|
|
for(k = 0; k < pred.cols; k += per_box){ |
|
|
|
|
float scale = 1.; |
|
|
|
|
int index = k/per_box; |
|
|
|
|
int row = index / num_boxes; |
|
|
|
|
int col = index % num_boxes; |
|
|
|
|
if (nuisance) scale = 1.-pred.vals[j][k]; |
|
|
|
|
for (class = 0; class < classes; ++class){ |
|
|
|
|
int ci = k+classes+background+nuisance; |
|
|
|
|
float y = (pred.vals[j][ci + 0] + row)/num_boxes; |
|
|
|
|
float x = (pred.vals[j][ci + 1] + col)/num_boxes; |
|
|
|
|
float h = pred.vals[j][ci + 2]; //* distance_from_edge(row, num_boxes);
|
|
|
|
|
h = h*h; |
|
|
|
|
float w = pred.vals[j][ci + 3]; //* distance_from_edge(col, num_boxes);
|
|
|
|
|
w = w*w; |
|
|
|
|
float prob = scale*pred.vals[j][k+class+background+nuisance]; |
|
|
|
|
if(prob < threshold) continue; |
|
|
|
|
printf("%d %d %f %f %f %f %f\n", offset + j, class, prob, y, x, h, w); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
free_matrix(pred); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void validate_detection(char *cfgfile, char *weightfile) |
|
|
|
|
{ |
|
|
|
|
network net = parse_network_cfg(cfgfile); |
|
|
|
@ -144,47 +172,37 @@ void validate_detection(char *cfgfile, char *weightfile) |
|
|
|
|
int m = plist->size; |
|
|
|
|
int i = 0; |
|
|
|
|
int splits = 100; |
|
|
|
|
int num = (i+1)*m/splits - i*m/splits; |
|
|
|
|
|
|
|
|
|
fprintf(stderr, "%d\n", m); |
|
|
|
|
data val, buffer; |
|
|
|
|
pthread_t load_thread = load_data_thread(paths, num, 0, 0, num_output, net.w, net.h, &buffer); |
|
|
|
|
int nthreads = 4; |
|
|
|
|
int t; |
|
|
|
|
data *val = calloc(nthreads, sizeof(data)); |
|
|
|
|
data *buf = calloc(nthreads, sizeof(data)); |
|
|
|
|
pthread_t *thr = calloc(nthreads, sizeof(data)); |
|
|
|
|
for(t = 0; t < nthreads; ++t){ |
|
|
|
|
int num = (i+1+t)*m/splits - (i+t)*m/splits; |
|
|
|
|
char **part = paths+((i+t)*m/splits); |
|
|
|
|
thr[t] = load_data_thread(part, num, 0, 0, num_output, net.w, net.h, &(buf[t])); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
clock_t time; |
|
|
|
|
for(i = 1; i <= splits; ++i){ |
|
|
|
|
for(i = nthreads; i <= splits; i += nthreads){ |
|
|
|
|
time=clock(); |
|
|
|
|
pthread_join(load_thread, 0); |
|
|
|
|
val = buffer; |
|
|
|
|
|
|
|
|
|
num = (i+1)*m/splits - i*m/splits; |
|
|
|
|
char **part = paths+(i*m/splits); |
|
|
|
|
if(i != splits) load_thread = load_data_thread(part, num, 0, 0, num_output, net.w, net.h, &buffer); |
|
|
|
|
for(t = 0; t < nthreads; ++t){ |
|
|
|
|
pthread_join(thr[t], 0); |
|
|
|
|
val[t] = buf[t]; |
|
|
|
|
} |
|
|
|
|
for(t = 0; t < nthreads && i < splits; ++t){ |
|
|
|
|
int num = (i+1+t)*m/splits - (i+t)*m/splits; |
|
|
|
|
char **part = paths+((i+t)*m/splits); |
|
|
|
|
thr[t] = load_data_thread(part, num, 0, 0, num_output, net.w, net.h, &(buf[t])); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
fprintf(stderr, "%d: Loaded: %lf seconds\n", i, sec(clock()-time)); |
|
|
|
|
matrix pred = network_predict_data(net, val); |
|
|
|
|
int j, k, class; |
|
|
|
|
for(j = 0; j < pred.rows; ++j){ |
|
|
|
|
for(k = 0; k < pred.cols; k += per_box){ |
|
|
|
|
float scale = 1.; |
|
|
|
|
int index = k/per_box; |
|
|
|
|
int row = index / num_boxes; |
|
|
|
|
int col = index % num_boxes; |
|
|
|
|
if (nuisance) scale = 1.-pred.vals[j][k]; |
|
|
|
|
for (class = 0; class < classes; ++class){ |
|
|
|
|
int ci = k+classes+background+nuisance; |
|
|
|
|
float y = (pred.vals[j][ci + 0] + row)/num_boxes; |
|
|
|
|
float x = (pred.vals[j][ci + 1] + col)/num_boxes; |
|
|
|
|
float h = pred.vals[j][ci + 2]; //* distance_from_edge(row, num_boxes);
|
|
|
|
|
h = h*h; |
|
|
|
|
float w = pred.vals[j][ci + 3]; //* distance_from_edge(col, num_boxes);
|
|
|
|
|
w = w*w; |
|
|
|
|
float prob = scale*pred.vals[j][k+class+background+nuisance]; |
|
|
|
|
if(prob < .001) continue; |
|
|
|
|
printf("%d %d %f %f %f %f %f\n", (i-1)*m/splits + j, class, prob, y, x, h, w); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
for(t = 0; t < nthreads; ++t){ |
|
|
|
|
predict_detections(net, val[t], .01, (i-nthreads+t)*m/splits, classes, nuisance, background, num_boxes, per_box); |
|
|
|
|
free_data(val[t]); |
|
|
|
|
} |
|
|
|
|
time=clock(); |
|
|
|
|
free_data(val); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|