|
|
|
@ -681,6 +681,102 @@ void bit_to_float(unsigned char *src, float *dst, size_t size, size_t filters, f |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void binary_align_weights(convolutional_layer *l) |
|
|
|
|
{ |
|
|
|
|
int m = l->n; |
|
|
|
|
int k = l->size*l->size*l->c; |
|
|
|
|
size_t new_lda = k + (l->lda_align - k % l->lda_align); // (k / 8 + 1) * 8;
|
|
|
|
|
l->new_lda = new_lda; |
|
|
|
|
|
|
|
|
|
binarize_weights(l->weights, m, k, l->binary_weights); |
|
|
|
|
|
|
|
|
|
size_t align_weights_size = new_lda * m; |
|
|
|
|
l->align_bit_weights_size = align_weights_size / 8 + 1; |
|
|
|
|
float *align_weights = calloc(align_weights_size, sizeof(float)); |
|
|
|
|
l->align_bit_weights = calloc(l->align_bit_weights_size, sizeof(char)); |
|
|
|
|
|
|
|
|
|
size_t i, j; |
|
|
|
|
// align A without transpose
|
|
|
|
|
for (i = 0; i < m; ++i) { |
|
|
|
|
for (j = 0; j < k; ++j) { |
|
|
|
|
align_weights[i*new_lda + j] = l->binary_weights[i*k + j]; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//if (l->c % 32 == 0)
|
|
|
|
|
if(gpu_index < 0 && l->stride == 1 && l->pad == 1 && l->c % 32 == 0) |
|
|
|
|
{ |
|
|
|
|
int fil, chan; |
|
|
|
|
const int items_per_filter = l->c * l->size * l->size; |
|
|
|
|
//const int dst_items_per_filter = new_lda;
|
|
|
|
|
for (fil = 0; fil < l->n; ++fil) |
|
|
|
|
{ |
|
|
|
|
for (chan = 0; chan < l->c; chan += 32) |
|
|
|
|
{ |
|
|
|
|
const int items_per_channel = l->size*l->size; |
|
|
|
|
for (i = 0; i < items_per_channel; ++i) |
|
|
|
|
{ |
|
|
|
|
uint32_t val = 0; |
|
|
|
|
int c_pack; |
|
|
|
|
for (c_pack = 0; c_pack < 32; ++c_pack) { |
|
|
|
|
float src = l->binary_weights[fil*items_per_filter + (chan + c_pack)*items_per_channel + i]; |
|
|
|
|
|
|
|
|
|
//align_weights[fil*items_per_filter + chan*items_per_channel + i * 32 + c_pack] = src;
|
|
|
|
|
|
|
|
|
|
align_weights[fil*new_lda + chan*items_per_channel + i*32 + c_pack] = src; |
|
|
|
|
//val |= (src << c);
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
//printf("\n l.index = %d \t aw[0] = %f, aw[1] = %f, aw[2] = %f, aw[3] = %f \n", l->index, align_weights[0], align_weights[1], align_weights[2], align_weights[3]);
|
|
|
|
|
//memcpy(l->binary_weights, align_weights, (l->size * l->size * l->c * l->n) * sizeof(float));
|
|
|
|
|
|
|
|
|
|
float_to_bit(align_weights, l->align_bit_weights, align_weights_size); |
|
|
|
|
|
|
|
|
|
get_mean_array(l->binary_weights, m*k, l->n, l->mean_arr); |
|
|
|
|
//get_mean_array(l->binary_weights, m*new_lda, l->n, l->mean_arr);
|
|
|
|
|
} |
|
|
|
|
else { |
|
|
|
|
float_to_bit(align_weights, l->align_bit_weights, align_weights_size); |
|
|
|
|
|
|
|
|
|
get_mean_array(l->binary_weights, m*k, l->n, l->mean_arr); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
//l->mean_arr = calloc(l->n, sizeof(float));
|
|
|
|
|
|
|
|
|
|
//get_mean_array(align_weights, align_weights_size, l->n, l->mean_arr);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#ifdef GPU |
|
|
|
|
cudaError_t status; |
|
|
|
|
l->align_workspace_size = l->bit_align * l->size * l->size * l->c; |
|
|
|
|
status = cudaMalloc((void **)&l->align_workspace_gpu, l->align_workspace_size * sizeof(float)); |
|
|
|
|
status = cudaMalloc((void **)&l->transposed_align_workspace_gpu, l->align_workspace_size * sizeof(float)); |
|
|
|
|
check_error(status); |
|
|
|
|
|
|
|
|
|
//l->align_bit_weights_gpu = cuda_make_array(l->align_bit_weights, l->align_bit_weights_size * sizeof(char)/sizeof(float));
|
|
|
|
|
status = cudaMalloc((void **)&l->align_bit_weights_gpu, l->align_bit_weights_size); |
|
|
|
|
check_error(status); |
|
|
|
|
status = cudaMemcpy(l->align_bit_weights_gpu, l->align_bit_weights, l->align_bit_weights_size, cudaMemcpyHostToDevice); |
|
|
|
|
check_error(status); |
|
|
|
|
status = cudaMemcpy(l->binary_weights_gpu, l->binary_weights, m*k * sizeof(float), cudaMemcpyHostToDevice); |
|
|
|
|
check_error(status); |
|
|
|
|
|
|
|
|
|
//l->mean_arr_gpu = cuda_make_array(l->mean_arr, l->n);
|
|
|
|
|
cuda_push_array(l->mean_arr_gpu, l->mean_arr, l->n); |
|
|
|
|
cudaDeviceSynchronize(); |
|
|
|
|
#endif // GPU
|
|
|
|
|
|
|
|
|
|
free(align_weights); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
void binary_align_weights(convolutional_layer *l) |
|
|
|
|
{ |
|
|
|
|
int m = l->n; |
|
|
|
@ -729,6 +825,7 @@ void binary_align_weights(convolutional_layer *l) |
|
|
|
|
|
|
|
|
|
free(align_weights); |
|
|
|
|
} |
|
|
|
|
*/ |
|
|
|
|
|
|
|
|
|
// binary transpose
|
|
|
|
|
size_t binary_transpose_align_input(int k, int n, float *b, char **t_bit_input, size_t ldb_align, int bit_align) |
|
|
|
@ -782,117 +879,98 @@ void forward_convolutional_layer(convolutional_layer l, network_state state) |
|
|
|
|
u++; |
|
|
|
|
|
|
|
|
|
for(i = 0; i < l.batch; ++i){ |
|
|
|
|
//im2col_cpu(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, b);
|
|
|
|
|
|
|
|
|
|
//float *t_input = NULL;
|
|
|
|
|
//if (l.xnor) {
|
|
|
|
|
// size_t new_ldb = k + (l.lda_align - k%l.lda_align);
|
|
|
|
|
// size_t t_intput_size = new_ldb * n;
|
|
|
|
|
// t_input = calloc(t_intput_size, sizeof(float));
|
|
|
|
|
// im2col_cpu_custom_transpose(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, t_input, new_ldb);
|
|
|
|
|
//}
|
|
|
|
|
//if (l.xnor && l.size == 3 && l.stride == 1 && l.pad == 1) {}
|
|
|
|
|
//else
|
|
|
|
|
// further optimizations: im2col_bin() for XNOR, and then transpose_aling_bin()
|
|
|
|
|
//im2col_cpu_custom(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, b);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
|
|
|
|
|
//gemm_nn_custom(m, n, k, 1, a, k, b, n, c, n);
|
|
|
|
|
if (l.xnor && l.align_bit_weights && !state.train && (l.stride == 1 && l.pad == 1)) { |
|
|
|
|
if (l.xnor && l.align_bit_weights && !state.train && (l.stride == 1 && l.pad == 1)) |
|
|
|
|
{ |
|
|
|
|
memset(b, 0, l.bit_align*l.size*l.size*l.c * sizeof(float)); |
|
|
|
|
//im2col_cpu_custom_align(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, b, l.bit_align);
|
|
|
|
|
im2col_cpu_custom_bin(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, b, l.bit_align); |
|
|
|
|
|
|
|
|
|
size_t output_size = l.outputs; |
|
|
|
|
//float *count_output = calloc(output_size, sizeof(float));
|
|
|
|
|
//size_t bit_output_size = output_size / 8 + 1;
|
|
|
|
|
//char *bit_output = calloc(bit_output_size, sizeof(char));
|
|
|
|
|
|
|
|
|
|
size_t intput_size = n * k; // (out_h*out_w) X (l.size*l.size*l.c) : after im2col()
|
|
|
|
|
size_t bit_input_size = intput_size / 8 + 1; |
|
|
|
|
//char *bit_input = calloc(bit_input_size, sizeof(char));
|
|
|
|
|
|
|
|
|
|
size_t weights_size = k * m; //l.size*l.size*l.c*l.n;
|
|
|
|
|
size_t bit_weights_size = weights_size / 8 + 1; |
|
|
|
|
//char *bit_weights = calloc(bit_weights_size, sizeof(char));
|
|
|
|
|
//float *mean_arr = calloc(l.n, sizeof(float));
|
|
|
|
|
|
|
|
|
|
// test: float->bit->float
|
|
|
|
|
//get_mean_array(l.weights, weights_size, l.n, mean_arr);
|
|
|
|
|
//float_to_bit(l.weights, bit_weights, weights_size);
|
|
|
|
|
//memset(l.weights, 0, weights_size * sizeof(float));
|
|
|
|
|
//bit_to_float(bit_weights, l.weights, weights_size, l.n, mean_arr); // just for test float->bit->float
|
|
|
|
|
|
|
|
|
|
//float_to_bit(b, bit_input, intput_size);
|
|
|
|
|
//memset(b, 0, intput_size * sizeof(float));
|
|
|
|
|
//bit_to_float(bit_input, b, intput_size, 1, NULL); // just for test float->bit->float
|
|
|
|
|
|
|
|
|
|
// transpose B from NxK to KxN (x-axis (ldb = l.size*l.size*l.c) - should be multiple of 8 bits)
|
|
|
|
|
{ |
|
|
|
|
/*
|
|
|
|
|
size_t ldb_align = 256;// 8;
|
|
|
|
|
|
|
|
|
|
if(l.c % 32 == 0) |
|
|
|
|
{ |
|
|
|
|
int ldb_align = l.lda_align; |
|
|
|
|
size_t new_ldb = k + (ldb_align - k%ldb_align); // (k / 8 + 1) * 8;
|
|
|
|
|
size_t t_intput_size = new_ldb * n; |
|
|
|
|
size_t t_intput_size = new_ldb * l.bit_align;// n;
|
|
|
|
|
size_t t_bit_input_size = t_intput_size / 8;// +1;
|
|
|
|
|
float *t_input = calloc(t_intput_size, sizeof(float)); |
|
|
|
|
char *t_bit_input = calloc(t_bit_input_size, sizeof(char)); |
|
|
|
|
|
|
|
|
|
//printf("\n bit_input_size = %d, n = %d, k = %d, ldb = %d \n", bit_input_size, n, k, n);
|
|
|
|
|
//printf("\n t_bit_input_size = %d, k = %d, n = %d, new_ldb = %d \n", t_bit_input_size, k, n, new_ldb);
|
|
|
|
|
const int new_c = l.c / 32; |
|
|
|
|
|
|
|
|
|
float *re_packed_input = calloc(l.c * l.w * l.h, sizeof(float)); |
|
|
|
|
uint32_t *bin_re_packed_input = calloc(new_c * l.w * l.h + 1, sizeof(uint32_t)); |
|
|
|
|
|
|
|
|
|
//printf("\n align_weights_size = %d, k = %d, m = %d, lda = %d \n", align_weights_size, k, m, k);
|
|
|
|
|
//printf("\n align_bit_weights_size = %d, k = %d, m = %d, new_lda = %d \n", align_bit_weights_size, k, m, new_ldb);
|
|
|
|
|
// float32x4 by channel (as in cuDNN)
|
|
|
|
|
repack_input(state.input, re_packed_input, l.w, l.h, l.c); |
|
|
|
|
|
|
|
|
|
// 32 x floats -> 1 x uint32_t
|
|
|
|
|
float_to_bit(re_packed_input, (char *)bin_re_packed_input, l.c * l.w * l.h); |
|
|
|
|
|
|
|
|
|
// transpose and align B
|
|
|
|
|
int i, j; |
|
|
|
|
for (i = 0; i < n; ++i) { |
|
|
|
|
for (j = 0; j < k; ++j) { |
|
|
|
|
t_input[i*new_ldb + j] = b[j*n + i]; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
float_to_bit(t_input, t_bit_input, t_intput_size); |
|
|
|
|
free(re_packed_input); |
|
|
|
|
|
|
|
|
|
// convolution the packed inputs and weights: float x 32 by channel (as in cuDNN)
|
|
|
|
|
//convolution_repacked((uint32_t *)bin_re_packed_input, (uint32_t *)l.align_bit_weights, l.output,
|
|
|
|
|
// l.w, l.h, l.c, l.n, l.size, l.pad, l.new_lda, l.mean_arr);
|
|
|
|
|
|
|
|
|
|
// // then exit from if()
|
|
|
|
|
|
|
|
|
|
if (!l.align_bit_weights) |
|
|
|
|
{ |
|
|
|
|
size_t align_weights_size = new_ldb * m; |
|
|
|
|
size_t align_bit_weights_size = align_weights_size / 8;// +1;
|
|
|
|
|
float *align_weights = calloc(align_weights_size, sizeof(float)); |
|
|
|
|
l.align_bit_weights = calloc(align_bit_weights_size, sizeof(char)); |
|
|
|
|
|
|
|
|
|
// align A without transpose
|
|
|
|
|
for (i = 0; i < m; ++i) { |
|
|
|
|
for (j = 0; j < k; ++j) { |
|
|
|
|
align_weights[i*new_ldb + j] = a[i*k + j]; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
float_to_bit(align_weights, l.align_bit_weights, align_weights_size); |
|
|
|
|
|
|
|
|
|
l.mean_arr = calloc(l.n, sizeof(float)); |
|
|
|
|
get_mean_array(align_weights, align_weights_size, l.n, l.mean_arr); |
|
|
|
|
im2col_cpu_custom((float *)bin_re_packed_input, new_c, l.h, l.w, l.size, l.stride, l.pad, b); |
|
|
|
|
//im2col_cpu((float *)bin_re_packed_input, new_c, l.h, l.w, l.size, l.stride, l.pad, b);
|
|
|
|
|
|
|
|
|
|
free(align_weights); |
|
|
|
|
} |
|
|
|
|
*/ |
|
|
|
|
free(bin_re_packed_input); |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
if (l.size == 3 && l.stride == 1 && l.pad == 1) |
|
|
|
|
{ |
|
|
|
|
//binarize_weights(l.weights, l.n, l.c*l.size*l.size, l.binary_weights);
|
|
|
|
|
//printf("\n mean = %f \n", l.mean_arr[0]);
|
|
|
|
|
int new_k = l.size*l.size*l.c / 32; |
|
|
|
|
|
|
|
|
|
convolution_2d(l.w, l.h, l.size, l.n, l.c, l.pad, l.stride, |
|
|
|
|
//l.weights, state.input, l.output, l.mean_arr);
|
|
|
|
|
l.binary_weights, state.input, l.output, l.mean_arr); |
|
|
|
|
} |
|
|
|
|
else { |
|
|
|
|
*/ |
|
|
|
|
// gemm_nn_bin_32bit_packed(m, n, new_k, 1,
|
|
|
|
|
// l.align_bit_weights, l.new_lda/32,
|
|
|
|
|
// b, n,
|
|
|
|
|
// c, n, l.mean_arr);
|
|
|
|
|
|
|
|
|
|
// // then exit from if()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//size_t new_ldb = k + (ldb_align - k%ldb_align); // (k / 8 + 1) * 8;
|
|
|
|
|
//size_t t_intput_size = new_ldb * l.bit_align;// n;
|
|
|
|
|
//size_t t_bit_input_size = t_intput_size / 8;// +1;
|
|
|
|
|
|
|
|
|
|
char *t_bit_input = calloc(t_bit_input_size, sizeof(char)); |
|
|
|
|
|
|
|
|
|
transpose_uint32((uint32_t *)b, t_bit_input, new_k, n, n, new_ldb); |
|
|
|
|
|
|
|
|
|
// the main GEMM function
|
|
|
|
|
gemm_nn_custom_bin_mean_transposed(m, n, k, 1, l.align_bit_weights, new_ldb, t_bit_input, new_ldb, c, n, l.mean_arr); |
|
|
|
|
|
|
|
|
|
// // alternative GEMM
|
|
|
|
|
//gemm_nn_bin_transposed_32bit_packed(m, n, new_k, 1,
|
|
|
|
|
// l.align_bit_weights, l.new_lda/32,
|
|
|
|
|
// t_bit_input, new_ldb / 32,
|
|
|
|
|
// c, n, l.mean_arr);
|
|
|
|
|
|
|
|
|
|
free(t_bit_input); |
|
|
|
|
|
|
|
|
|
} |
|
|
|
|
else { // else (l.c % 32 != 0)
|
|
|
|
|
|
|
|
|
|
//--------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
//im2col_cpu_custom_align(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, b, l.bit_align);
|
|
|
|
|
im2col_cpu_custom_bin(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, b, l.bit_align); |
|
|
|
|
|
|
|
|
|
size_t output_size = l.outputs; |
|
|
|
|
//float *count_output = calloc(output_size, sizeof(float));
|
|
|
|
|
//size_t bit_output_size = output_size / 8 + 1;
|
|
|
|
|
//char *bit_output = calloc(bit_output_size, sizeof(char));
|
|
|
|
|
|
|
|
|
|
size_t intput_size = n * k; // (out_h*out_w) X (l.size*l.size*l.c) : after im2col()
|
|
|
|
|
size_t bit_input_size = intput_size / 8 + 1; |
|
|
|
|
//char *bit_input = calloc(bit_input_size, sizeof(char));
|
|
|
|
|
|
|
|
|
|
size_t weights_size = k * m; //l.size*l.size*l.c*l.n;
|
|
|
|
|
size_t bit_weights_size = weights_size / 8 + 1; |
|
|
|
|
//char *bit_weights = calloc(bit_weights_size, sizeof(char));
|
|
|
|
|
//float *mean_arr = calloc(l.n, sizeof(float));
|
|
|
|
|
|
|
|
|
|
// transpose B from NxK to KxN (x-axis (ldb = l.size*l.size*l.c) - should be multiple of 8 bits)
|
|
|
|
|
{ |
|
|
|
|
//size_t ldb_align = 256; // 256 bit for AVX2
|
|
|
|
|
int ldb_align = l.lda_align; |
|
|
|
|
size_t new_ldb = k + (ldb_align - k%ldb_align); |
|
|
|
@ -908,27 +986,11 @@ void forward_convolutional_layer(convolutional_layer l, network_state state) |
|
|
|
|
|
|
|
|
|
//free(t_input);
|
|
|
|
|
free(t_bit_input); |
|
|
|
|
//}
|
|
|
|
|
//}
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// for bit_input: (k * n)
|
|
|
|
|
//if (u == 8) gemm_nn_custom_bin_mean(m, n, k, 1, bit_weights, k, bit_input, n, c, n, mean_arr); // last xnor layer
|
|
|
|
|
//else gemm_nn_custom_bin_mean(m, n, k, 1, bit_weights, k, bit_input, n, c, n, NULL);
|
|
|
|
|
|
|
|
|
|
//gemm_nn_custom_bin_mean(m, n, k, 1, bit_weights, k, bit_input, n, c, n, mean_arr);
|
|
|
|
|
|
|
|
|
|
//printf("\n u = %d \n", u);
|
|
|
|
|
|
|
|
|
|
//gemm_nn_custom(m, n, k, 1, a, k, b, n, c, n);
|
|
|
|
|
|
|
|
|
|
//int j;
|
|
|
|
|
//if (u != 8) for (j = 0; j < l.n; ++j) l.biases[j] = l.biases[j] / (mean_arr[j]*2);
|
|
|
|
|
|
|
|
|
|
//free(count_output);
|
|
|
|
|
//free(bit_input);
|
|
|
|
|
//free(bit_weights);
|
|
|
|
|
//free(mean_arr);
|
|
|
|
|
} |
|
|
|
|
else { |
|
|
|
|
im2col_cpu_custom(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, b); |
|
|
|
|