Temporary experimental XNOR improvements on CPU

pull/2160/head
AlexeyAB 6 years ago
parent 1a2f16e9d9
commit 48d461f9bd
  1. 280
      src/convolutional_layer.c
  2. 255
      src/gemm.c
  3. 17
      src/gemm.h
  4. 6
      src/image.c

@ -681,6 +681,102 @@ void bit_to_float(unsigned char *src, float *dst, size_t size, size_t filters, f
}
}
void binary_align_weights(convolutional_layer *l)
{
int m = l->n;
int k = l->size*l->size*l->c;
size_t new_lda = k + (l->lda_align - k % l->lda_align); // (k / 8 + 1) * 8;
l->new_lda = new_lda;
binarize_weights(l->weights, m, k, l->binary_weights);
size_t align_weights_size = new_lda * m;
l->align_bit_weights_size = align_weights_size / 8 + 1;
float *align_weights = calloc(align_weights_size, sizeof(float));
l->align_bit_weights = calloc(l->align_bit_weights_size, sizeof(char));
size_t i, j;
// align A without transpose
for (i = 0; i < m; ++i) {
for (j = 0; j < k; ++j) {
align_weights[i*new_lda + j] = l->binary_weights[i*k + j];
}
}
//if (l->c % 32 == 0)
if(gpu_index < 0 && l->stride == 1 && l->pad == 1 && l->c % 32 == 0)
{
int fil, chan;
const int items_per_filter = l->c * l->size * l->size;
//const int dst_items_per_filter = new_lda;
for (fil = 0; fil < l->n; ++fil)
{
for (chan = 0; chan < l->c; chan += 32)
{
const int items_per_channel = l->size*l->size;
for (i = 0; i < items_per_channel; ++i)
{
uint32_t val = 0;
int c_pack;
for (c_pack = 0; c_pack < 32; ++c_pack) {
float src = l->binary_weights[fil*items_per_filter + (chan + c_pack)*items_per_channel + i];
//align_weights[fil*items_per_filter + chan*items_per_channel + i * 32 + c_pack] = src;
align_weights[fil*new_lda + chan*items_per_channel + i*32 + c_pack] = src;
//val |= (src << c);
}
}
}
}
//printf("\n l.index = %d \t aw[0] = %f, aw[1] = %f, aw[2] = %f, aw[3] = %f \n", l->index, align_weights[0], align_weights[1], align_weights[2], align_weights[3]);
//memcpy(l->binary_weights, align_weights, (l->size * l->size * l->c * l->n) * sizeof(float));
float_to_bit(align_weights, l->align_bit_weights, align_weights_size);
get_mean_array(l->binary_weights, m*k, l->n, l->mean_arr);
//get_mean_array(l->binary_weights, m*new_lda, l->n, l->mean_arr);
}
else {
float_to_bit(align_weights, l->align_bit_weights, align_weights_size);
get_mean_array(l->binary_weights, m*k, l->n, l->mean_arr);
}
//l->mean_arr = calloc(l->n, sizeof(float));
//get_mean_array(align_weights, align_weights_size, l->n, l->mean_arr);
#ifdef GPU
cudaError_t status;
l->align_workspace_size = l->bit_align * l->size * l->size * l->c;
status = cudaMalloc((void **)&l->align_workspace_gpu, l->align_workspace_size * sizeof(float));
status = cudaMalloc((void **)&l->transposed_align_workspace_gpu, l->align_workspace_size * sizeof(float));
check_error(status);
//l->align_bit_weights_gpu = cuda_make_array(l->align_bit_weights, l->align_bit_weights_size * sizeof(char)/sizeof(float));
status = cudaMalloc((void **)&l->align_bit_weights_gpu, l->align_bit_weights_size);
check_error(status);
status = cudaMemcpy(l->align_bit_weights_gpu, l->align_bit_weights, l->align_bit_weights_size, cudaMemcpyHostToDevice);
check_error(status);
status = cudaMemcpy(l->binary_weights_gpu, l->binary_weights, m*k * sizeof(float), cudaMemcpyHostToDevice);
check_error(status);
//l->mean_arr_gpu = cuda_make_array(l->mean_arr, l->n);
cuda_push_array(l->mean_arr_gpu, l->mean_arr, l->n);
cudaDeviceSynchronize();
#endif // GPU
free(align_weights);
}
/*
void binary_align_weights(convolutional_layer *l)
{
int m = l->n;
@ -729,6 +825,7 @@ void binary_align_weights(convolutional_layer *l)
free(align_weights);
}
*/
// binary transpose
size_t binary_transpose_align_input(int k, int n, float *b, char **t_bit_input, size_t ldb_align, int bit_align)
@ -782,117 +879,98 @@ void forward_convolutional_layer(convolutional_layer l, network_state state)
u++;
for(i = 0; i < l.batch; ++i){
//im2col_cpu(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, b);
//float *t_input = NULL;
//if (l.xnor) {
// size_t new_ldb = k + (l.lda_align - k%l.lda_align);
// size_t t_intput_size = new_ldb * n;
// t_input = calloc(t_intput_size, sizeof(float));
// im2col_cpu_custom_transpose(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, t_input, new_ldb);
//}
//if (l.xnor && l.size == 3 && l.stride == 1 && l.pad == 1) {}
//else
// further optimizations: im2col_bin() for XNOR, and then transpose_aling_bin()
//im2col_cpu_custom(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, b);
//gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
//gemm_nn_custom(m, n, k, 1, a, k, b, n, c, n);
if (l.xnor && l.align_bit_weights && !state.train && (l.stride == 1 && l.pad == 1)) {
if (l.xnor && l.align_bit_weights && !state.train && (l.stride == 1 && l.pad == 1))
{
memset(b, 0, l.bit_align*l.size*l.size*l.c * sizeof(float));
//im2col_cpu_custom_align(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, b, l.bit_align);
im2col_cpu_custom_bin(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, b, l.bit_align);
size_t output_size = l.outputs;
//float *count_output = calloc(output_size, sizeof(float));
//size_t bit_output_size = output_size / 8 + 1;
//char *bit_output = calloc(bit_output_size, sizeof(char));
size_t intput_size = n * k; // (out_h*out_w) X (l.size*l.size*l.c) : after im2col()
size_t bit_input_size = intput_size / 8 + 1;
//char *bit_input = calloc(bit_input_size, sizeof(char));
size_t weights_size = k * m; //l.size*l.size*l.c*l.n;
size_t bit_weights_size = weights_size / 8 + 1;
//char *bit_weights = calloc(bit_weights_size, sizeof(char));
//float *mean_arr = calloc(l.n, sizeof(float));
// test: float->bit->float
//get_mean_array(l.weights, weights_size, l.n, mean_arr);
//float_to_bit(l.weights, bit_weights, weights_size);
//memset(l.weights, 0, weights_size * sizeof(float));
//bit_to_float(bit_weights, l.weights, weights_size, l.n, mean_arr); // just for test float->bit->float
//float_to_bit(b, bit_input, intput_size);
//memset(b, 0, intput_size * sizeof(float));
//bit_to_float(bit_input, b, intput_size, 1, NULL); // just for test float->bit->float
// transpose B from NxK to KxN (x-axis (ldb = l.size*l.size*l.c) - should be multiple of 8 bits)
{
/*
size_t ldb_align = 256;// 8;
if(l.c % 32 == 0)
{
int ldb_align = l.lda_align;
size_t new_ldb = k + (ldb_align - k%ldb_align); // (k / 8 + 1) * 8;
size_t t_intput_size = new_ldb * n;
size_t t_intput_size = new_ldb * l.bit_align;// n;
size_t t_bit_input_size = t_intput_size / 8;// +1;
float *t_input = calloc(t_intput_size, sizeof(float));
char *t_bit_input = calloc(t_bit_input_size, sizeof(char));
//printf("\n bit_input_size = %d, n = %d, k = %d, ldb = %d \n", bit_input_size, n, k, n);
//printf("\n t_bit_input_size = %d, k = %d, n = %d, new_ldb = %d \n", t_bit_input_size, k, n, new_ldb);
const int new_c = l.c / 32;
float *re_packed_input = calloc(l.c * l.w * l.h, sizeof(float));
uint32_t *bin_re_packed_input = calloc(new_c * l.w * l.h + 1, sizeof(uint32_t));
//printf("\n align_weights_size = %d, k = %d, m = %d, lda = %d \n", align_weights_size, k, m, k);
//printf("\n align_bit_weights_size = %d, k = %d, m = %d, new_lda = %d \n", align_bit_weights_size, k, m, new_ldb);
// float32x4 by channel (as in cuDNN)
repack_input(state.input, re_packed_input, l.w, l.h, l.c);
// 32 x floats -> 1 x uint32_t
float_to_bit(re_packed_input, (char *)bin_re_packed_input, l.c * l.w * l.h);
// transpose and align B
int i, j;
for (i = 0; i < n; ++i) {
for (j = 0; j < k; ++j) {
t_input[i*new_ldb + j] = b[j*n + i];
}
}
float_to_bit(t_input, t_bit_input, t_intput_size);
free(re_packed_input);
// convolution the packed inputs and weights: float x 32 by channel (as in cuDNN)
//convolution_repacked((uint32_t *)bin_re_packed_input, (uint32_t *)l.align_bit_weights, l.output,
// l.w, l.h, l.c, l.n, l.size, l.pad, l.new_lda, l.mean_arr);
// // then exit from if()
if (!l.align_bit_weights)
{
size_t align_weights_size = new_ldb * m;
size_t align_bit_weights_size = align_weights_size / 8;// +1;
float *align_weights = calloc(align_weights_size, sizeof(float));
l.align_bit_weights = calloc(align_bit_weights_size, sizeof(char));
// align A without transpose
for (i = 0; i < m; ++i) {
for (j = 0; j < k; ++j) {
align_weights[i*new_ldb + j] = a[i*k + j];
}
}
float_to_bit(align_weights, l.align_bit_weights, align_weights_size);
l.mean_arr = calloc(l.n, sizeof(float));
get_mean_array(align_weights, align_weights_size, l.n, l.mean_arr);
im2col_cpu_custom((float *)bin_re_packed_input, new_c, l.h, l.w, l.size, l.stride, l.pad, b);
//im2col_cpu((float *)bin_re_packed_input, new_c, l.h, l.w, l.size, l.stride, l.pad, b);
free(align_weights);
}
*/
free(bin_re_packed_input);
/*
if (l.size == 3 && l.stride == 1 && l.pad == 1)
{
//binarize_weights(l.weights, l.n, l.c*l.size*l.size, l.binary_weights);
//printf("\n mean = %f \n", l.mean_arr[0]);
int new_k = l.size*l.size*l.c / 32;
convolution_2d(l.w, l.h, l.size, l.n, l.c, l.pad, l.stride,
//l.weights, state.input, l.output, l.mean_arr);
l.binary_weights, state.input, l.output, l.mean_arr);
}
else {
*/
// gemm_nn_bin_32bit_packed(m, n, new_k, 1,
// l.align_bit_weights, l.new_lda/32,
// b, n,
// c, n, l.mean_arr);
// // then exit from if()
//size_t new_ldb = k + (ldb_align - k%ldb_align); // (k / 8 + 1) * 8;
//size_t t_intput_size = new_ldb * l.bit_align;// n;
//size_t t_bit_input_size = t_intput_size / 8;// +1;
char *t_bit_input = calloc(t_bit_input_size, sizeof(char));
transpose_uint32((uint32_t *)b, t_bit_input, new_k, n, n, new_ldb);
// the main GEMM function
gemm_nn_custom_bin_mean_transposed(m, n, k, 1, l.align_bit_weights, new_ldb, t_bit_input, new_ldb, c, n, l.mean_arr);
// // alternative GEMM
//gemm_nn_bin_transposed_32bit_packed(m, n, new_k, 1,
// l.align_bit_weights, l.new_lda/32,
// t_bit_input, new_ldb / 32,
// c, n, l.mean_arr);
free(t_bit_input);
}
else { // else (l.c % 32 != 0)
//--------------------------------------------------------
//im2col_cpu_custom_align(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, b, l.bit_align);
im2col_cpu_custom_bin(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, b, l.bit_align);
size_t output_size = l.outputs;
//float *count_output = calloc(output_size, sizeof(float));
//size_t bit_output_size = output_size / 8 + 1;
//char *bit_output = calloc(bit_output_size, sizeof(char));
size_t intput_size = n * k; // (out_h*out_w) X (l.size*l.size*l.c) : after im2col()
size_t bit_input_size = intput_size / 8 + 1;
//char *bit_input = calloc(bit_input_size, sizeof(char));
size_t weights_size = k * m; //l.size*l.size*l.c*l.n;
size_t bit_weights_size = weights_size / 8 + 1;
//char *bit_weights = calloc(bit_weights_size, sizeof(char));
//float *mean_arr = calloc(l.n, sizeof(float));
// transpose B from NxK to KxN (x-axis (ldb = l.size*l.size*l.c) - should be multiple of 8 bits)
{
//size_t ldb_align = 256; // 256 bit for AVX2
int ldb_align = l.lda_align;
size_t new_ldb = k + (ldb_align - k%ldb_align);
@ -908,27 +986,11 @@ void forward_convolutional_layer(convolutional_layer l, network_state state)
//free(t_input);
free(t_bit_input);
//}
//}
}
}
// for bit_input: (k * n)
//if (u == 8) gemm_nn_custom_bin_mean(m, n, k, 1, bit_weights, k, bit_input, n, c, n, mean_arr); // last xnor layer
//else gemm_nn_custom_bin_mean(m, n, k, 1, bit_weights, k, bit_input, n, c, n, NULL);
//gemm_nn_custom_bin_mean(m, n, k, 1, bit_weights, k, bit_input, n, c, n, mean_arr);
//printf("\n u = %d \n", u);
//gemm_nn_custom(m, n, k, 1, a, k, b, n, c, n);
//int j;
//if (u != 8) for (j = 0; j < l.n; ++j) l.biases[j] = l.biases[j] / (mean_arr[j]*2);
//free(count_output);
//free(bit_input);
//free(bit_weights);
//free(mean_arr);
}
else {
im2col_cpu_custom(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, b);

@ -487,6 +487,15 @@ void transpose_bin(uint32_t *A, uint32_t *B, const int n, const int m,
}
}
}
static inline int popcnt_32(uint32_t val32) {
#ifdef WIN32 // Windows
int tmp_count = __popcnt(val32);
#else // Linux
int tmp_count = __builtin_popcount(val32);
#endif
return tmp_count;
}
//----------------------------
@ -721,6 +730,91 @@ void gemm_nn(int M, int N, int K, float ALPHA,
}
void gemm_nn_bin_32bit_packed(int M, int N, int K, float ALPHA,
uint32_t *A, int lda,
uint32_t *B, int ldb,
float *C, int ldc, float *mean_arr)
{
int i;
#pragma omp parallel for
for (i = 0; i < M; ++i) { // l.n
int j, s;
float mean_val = mean_arr[i];
//printf(" l.mean_arr[i] = %d \n ", l.mean_arr[i]);
for (s = 0; s < K; ++s) // l.size*l.size*l.c/32 or (l.size*l.size*l.c)
{
register uint32_t A_PART = A[i*lda + s];
__m256i a256 = _mm256_set1_epi32(A_PART);
for (j = 0; j < N - 8; j += 8)
{
__m256i b256 = *((__m256i*)&B[s*ldb + j]);
__m256i xor256 = _mm256_xor_si256(a256, b256); // xnor = xor(a,b)
__m256i all_1 = _mm256_set1_epi8(255);
__m256i xnor256 = _mm256_andnot_si256(xor256, all_1); // xnor = not(xor(a,b))
//_m256 count = _mm256_set_ps(
/*
__m256i count = _mm256_setr_epi32(
(int)popcnt_32(xnor256.m256i_u32[0]),
(int)popcnt_32(xnor256.m256i_u32[1]),
(int)popcnt_32(xnor256.m256i_u32[2]),
(int)popcnt_32(xnor256.m256i_u32[3]),
(int)popcnt_32(xnor256.m256i_u32[4]),
(int)popcnt_32(xnor256.m256i_u32[5]),
(int)popcnt_32(xnor256.m256i_u32[6]),
(int)popcnt_32(xnor256.m256i_u32[7]));
__m256i val2 = _mm256_set1_epi32(2);
count = _mm256_mullo_epi32(count, val2);
__m256i val32 = _mm256_set1_epi32(32);
count = _mm256_sub_epi32(count, val32);
int z;
for (z = 0; z < 8; ++z) {
C[i*ldc + j + z] += count.m256i_i32[z] * mean_val;
}
*/
__m256 count = _mm256_setr_ps(
popcnt_32(xnor256.m256i_u32[0]),
popcnt_32(xnor256.m256i_u32[1]),
popcnt_32(xnor256.m256i_u32[2]),
popcnt_32(xnor256.m256i_u32[3]),
popcnt_32(xnor256.m256i_u32[4]),
popcnt_32(xnor256.m256i_u32[5]),
popcnt_32(xnor256.m256i_u32[6]),
popcnt_32(xnor256.m256i_u32[7]));
__m256 val2 = _mm256_set1_ps(2);
count = _mm256_mul_ps(count, val2); // count * 2
__m256 val32 = _mm256_set1_ps(32);
count = _mm256_sub_ps(count, val32); // count - 32
__m256 mean256 = _mm256_set1_ps(mean_val);
count = _mm256_mul_ps(count, mean256); // count * mean_val
__m256 c256 = *((__m256*)&C[i*ldc + j]);
count = _mm256_add_ps(count, c256); // c = c + count
*((__m256*)&C[i*ldc + j]) = count;
}
for (; j < N; ++j) // out_h*out_w;
{
register uint32_t B_PART = B[s*ldb + j];
uint32_t xnor_result = ~(A_PART ^ B_PART);
int32_t count = popcnt_32(xnor_result); // must be Signed int
C[i*ldc + j] += (2 * count - 32) * mean_val;
}
}
}
}
void convolution_2d_old(int w, int h, int ksize, int n, int c, int pad, int stride,
float *weights, float *input, float *output)
{
@ -1652,7 +1746,7 @@ void forward_maxpool_layer_avx(float *src, float *dst, int *indexes, int size, i
}
}
#else
#else // AVX
void gemm_nn(int M, int N, int K, float ALPHA,
float *A, int lda,
@ -1670,6 +1764,36 @@ void gemm_nn(int M, int N, int K, float ALPHA,
}
}
void gemm_nn_bin_32bit_packed(int M, int N, int K, float ALPHA,
uint32_t *A, int lda,
uint32_t *B, int ldb,
float *C, int ldc, float *mean_arr)
{
int i;
#pragma omp parallel for
for (i = 0; i < M; ++i) { // l.n
int j, s;
float mean_val = mean_arr[i];
//printf(" l.mean_arr[i] = %d \n ", l.mean_arr[i]);
for (s = 0; s < K; ++s) // l.size*l.size*l.c/32 or (l.size*l.size*l.c)
{
//register float A_PART = 1*a[i*k + s];
register uint32_t A_PART = A[i*lda + s];
for (j = 0; j < N; ++j) // out_h*out_w;
{
//c[i*n + j] += A_PART*b[s*n + j];
register uint32_t B_PART = B[s*ldb + j];
uint32_t xnor_result = ~(A_PART ^ B_PART);
//printf(" xnor_result = %d, ", xnor_result);
int32_t count = popcnt_32(xnor_result); // must be Signed int
C[i*ldc + j] += (2 * count - 32) * mean_val;
//c[i*n + j] += count*mean;
}
}
}
}
void convolution_2d(int w, int h, int ksize, int n, int c, int pad, int stride,
float *weights, float *input, float *output, float *mean)
@ -2102,6 +2226,135 @@ void forward_maxpool_layer_avx(float *src, float *dst, int *indexes, int size, i
#endif // AVX
// 32 channels -> 1 channel (with 32 floats)
// 256 channels -> 8 channels (with 32 floats)
void repack_input(float *input, float *re_packed_input, int w, int h, int c)
{
const int items_per_channel = w * h;
int chan, i;
for (chan = 0; chan < c; chan += 32)
{
for (i = 0; i < items_per_channel; ++i)
{
int c_pack;
for (c_pack = 0; c_pack < 32; ++c_pack) {
float src = input[(chan + c_pack)*items_per_channel + i];
re_packed_input[chan*items_per_channel + i * 32 + c_pack] = src;
}
}
}
}
void transpose_uint32(uint32_t *src, uint32_t *dst, int src_h, int src_w, int src_align, int dst_align)
{
//l.bit_align - algined (n) by 32
//new_ldb - aligned (k) by 256
int i;
//#pragma omp parallel for
for (i = 0; i < src_h; i += 1) // l.size*l.size*l.c;
{
int j;
for (j = 0; j < src_w; j += 1) // out_h*out_w;
{
((uint32_t *)dst)[j*dst_align / 32 + i] = ((uint32_t *)src)[i*src_align + j];
}
}
}
void gemm_nn_bin_transposed_32bit_packed(int M, int N, int K, float ALPHA,
uint32_t *A, int lda,
uint32_t *B, int ldb,
float *C, int ldc, float *mean_arr)
{
int i;
#pragma omp parallel for
for (i = 0; i < M; ++i) { // l.n
int j, s;
float mean_val = mean_arr[i];
for (s = 0; s < K; ++s) // l.size*l.size*l.c/32 or (l.size*l.size*l.c)
{
register uint32_t A_PART = ((uint32_t*)A)[i*lda + s];
for (j = 0; j < N; ++j) // out_h*out_w;
{
register uint32_t B_PART = ((uint32_t*)B)[j*ldb + s];
uint32_t xnor_result = ~(A_PART ^ B_PART);
int32_t count = popcnt_32(xnor_result); // must be Signed int
C[i*ldc + j] += (2 * count - 32) * mean_val;
}
}
}
}
void convolution_repacked(uint32_t *packed_input, uint32_t *packed_weights, float *output,
int w, int h, int c, int n, int size, int pad, int new_lda, float *mean_arr)
{
int fil;
// filter index
#pragma omp parallel for
for (fil = 0; fil < n; ++fil) {
float mean_val = mean_arr[fil];
int chan, c_pack, y, x, f_y, f_x;
// channel index
for (chan = 0; chan < c / 32; ++chan)
//for (chan = 0; chan < l.c; chan += 32)
//for (c_pack = 0; c_pack < 32; ++c_pack)
// input - y
for (y = 0; y < h; ++y)
// input - x
for (x = 0; x < w; ++x)
{
int const output_index = fil*w*h + y*w + x;
float sum = 0;
// filter - y
for (f_y = 0; f_y < size; ++f_y)
{
int input_y = y + f_y - pad;
// filter - x
for (f_x = 0; f_x < size; ++f_x)
{
int input_x = x + f_x - pad;
if (input_y < 0 || input_x < 0 || input_y >= h || input_x >= w) continue;
// normal
//float input = state.input[(chan + c_pack)*l.w*l.h + input_y*l.w + input_x];
//float weight = l.weights[fil*l.c*l.size*l.size + (chan + c_pack)*l.size*l.size + f_y*l.size + f_x];
// packed
//float input = re_packed_input[chan*l.w*l.h + (input_y*l.w + input_x) * 32 + c_pack];
//float weight = l.weights[fil*l.c*l.size*l.size + chan*l.size*l.size + (f_y*l.size + f_x) * 32 + c_pack];
//sum += input * weight;
//float input = re_packed_input[chan*l.w*l.h + (input_y*l.w + input_x) * 32 + c_pack];
//float weight = l.weights[fil*l.c*l.size*l.size + chan*l.size*l.size + (f_y*l.size + f_x) * 32 + c_pack];
//uint32_t bit1 = input > 0;
//uint32_t bit2 = weight > 0;
//uint32_t count = (~(bit1 ^ bit2)) & 1;
//float result = (2 * (float)count - 1) * mean_val;
//printf("\n mul = %f, bit1 = %d, bit2 = %d, count = %d, mean = %f, result = %f ", input*weight, bit1, bit2, count, mean_val, result);
//sum += result;
uint32_t input = ((uint32_t *)packed_input)[chan*w*h + input_y*w + input_x];
//uint32_t weight = ((uint32_t *)l.align_bit_weights)[fil*l.c*l.size*l.size/32 + chan*l.size*l.size + f_y*l.size + f_x];
uint32_t weight = ((uint32_t *)packed_weights)[fil*new_lda / 32 + chan*size*size + f_y*size + f_x];
uint32_t xnor_result = ~(input ^ weight);
int32_t count = popcnt_32(xnor_result); // mandatory Signed int
sum += (2 * count - 32) * mean_val;
}
}
// l.output[filters][width][height] +=
// state.input[channels][width][height] *
// l.weights[filters][channels][filter_width][filter_height];
output[output_index] += sum;
}
}
}
void gemm_nt(int M, int N, int K, float ALPHA,
float *A, int lda,
float *B, int ldb,

@ -59,6 +59,23 @@ void gemm_bin(int M, int N, int K, float ALPHA,
float *B, int ldb,
float *C, int ldc);
void repack_input(float *input, float *re_packed_input, int w, int h, int c);
void convolution_repacked(uint32_t *packed_input, uint32_t *packed_weights, float *output,
int w, int h, int c, int n, int size, int pad, int new_lda, float *mean_arr);
void gemm_nn_bin_32bit_packed(int M, int N, int K, float ALPHA,
uint32_t *A, int lda,
uint32_t *B, int ldb,
float *C, int ldc, float *mean_arr);
void transpose_uint32(uint32_t *src, uint32_t *dst, int src_h, int src_w, int src_align, int dst_align);
void gemm_nn_bin_transposed_32bit_packed(int M, int N, int K, float ALPHA,
uint32_t *A, int lda,
uint32_t *B, int ldb,
float *C, int ldc, float *mean_arr);
void forward_maxpool_layer_avx(float *src, float *dst, int *indexes, int size, int w, int h, int out_w, int out_h, int c,
int pad, int stride, int batch);

@ -325,9 +325,9 @@ void draw_detections_v3(image im, detection *dets, int num, float thresh, char *
printf("%s: %.0f%%", names[best_class], selected_detections[i].det.prob[best_class] * 100);
if (ext_output)
printf("\t(left_x: %4.0f top_y: %4.0f width: %4.0f height: %4.0f)\n",
(selected_detections[i].det.bbox.x - selected_detections[i].det.bbox.w / 2)*im.w,
(selected_detections[i].det.bbox.y - selected_detections[i].det.bbox.h / 2)*im.h,
selected_detections[i].det.bbox.w*im.w, selected_detections[i].det.bbox.h*im.h);
round((selected_detections[i].det.bbox.x - selected_detections[i].det.bbox.w / 2)*im.w),
round((selected_detections[i].det.bbox.y - selected_detections[i].det.bbox.h / 2)*im.h),
round(selected_detections[i].det.bbox.w*im.w), round(selected_detections[i].det.bbox.h*im.h));
else
printf("\n");
int j;

Loading…
Cancel
Save