|
|
|
@ -31,21 +31,23 @@ void test_parser() |
|
|
|
|
save_network(net, "cfg/trained_imagenet_smaller.cfg"); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#define AMNT 3 |
|
|
|
|
void draw_detection(image im, float *box, int side) |
|
|
|
|
{ |
|
|
|
|
int j; |
|
|
|
|
int r, c; |
|
|
|
|
float amount[5] = {0,0,0,0,0}; |
|
|
|
|
float amount[AMNT] = {0}; |
|
|
|
|
for(r = 0; r < side*side; ++r){ |
|
|
|
|
for(j = 0; j < 5; ++j){ |
|
|
|
|
if(box[r*5] > amount[j]) { |
|
|
|
|
amount[j] = box[r*5]; |
|
|
|
|
break; |
|
|
|
|
float val = box[r*5]; |
|
|
|
|
for(j = 0; j < AMNT; ++j){ |
|
|
|
|
if(val > amount[j]) { |
|
|
|
|
float swap = val; |
|
|
|
|
val = amount[j]; |
|
|
|
|
amount[j] = swap; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
float smallest = amount[0]; |
|
|
|
|
for(j = 1; j < 5; ++j) if(amount[j] < smallest) smallest = amount[j]; |
|
|
|
|
float smallest = amount[AMNT-1]; |
|
|
|
|
|
|
|
|
|
for(r = 0; r < side; ++r){ |
|
|
|
|
for(c = 0; c < side; ++c){ |
|
|
|
@ -57,9 +59,9 @@ void draw_detection(image im, float *box, int side) |
|
|
|
|
int x = c*d+box[j+2]*d; |
|
|
|
|
int h = box[j+3]*256; |
|
|
|
|
int w = box[j+4]*256; |
|
|
|
|
printf("%f %f %f %f\n", box[j+1], box[j+2], box[j+3], box[j+4]); |
|
|
|
|
printf("%d %d %d %d\n", x, y, w, h); |
|
|
|
|
printf("%d %d %d %d\n", x-w/2, y-h/2, x+w/2, y+h/2); |
|
|
|
|
//printf("%f %f %f %f\n", box[j+1], box[j+2], box[j+3], box[j+4]);
|
|
|
|
|
//printf("%d %d %d %d\n", x, y, w, h);
|
|
|
|
|
//printf("%d %d %d %d\n", x-w/2, y-h/2, x+w/2, y+h/2);
|
|
|
|
|
draw_box(im, x-w/2, y-h/2, x+w/2, y+h/2); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
@ -87,9 +89,11 @@ void train_detection_net() |
|
|
|
|
i += 1; |
|
|
|
|
time=clock(); |
|
|
|
|
data train = load_data_detection_jitter_random(imgs, paths, plist->size, 256, 256, 7, 7, 256); |
|
|
|
|
/*
|
|
|
|
|
image im = float_to_image(224, 224, 3, train.X.vals[0]); |
|
|
|
|
draw_detection(im, train.y.vals[0], 7); |
|
|
|
|
//data train = load_data_detection_random(imgs, paths, plist->size, 224, 224, 7, 7, 256);
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
image im = float_to_image(224, 224, 3, train.X.vals[923]); |
|
|
|
|
draw_detection(im, train.y.vals[923], 7); |
|
|
|
|
*/ |
|
|
|
|
|
|
|
|
|
normalize_data_rows(train); |
|
|
|
@ -151,10 +155,10 @@ void train_imagenet(char *cfgfile) |
|
|
|
|
//network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg");
|
|
|
|
|
srand(time(0)); |
|
|
|
|
network net = parse_network_cfg(cfgfile); |
|
|
|
|
set_learning_network(&net, net.learning_rate, .5, .0005); |
|
|
|
|
set_learning_network(&net, net.learning_rate/10., .5, .0005); |
|
|
|
|
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
|
|
|
|
int imgs = 1024; |
|
|
|
|
int i = 23030; |
|
|
|
|
int i = 44700; |
|
|
|
|
char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list"); |
|
|
|
|
list *plist = get_paths("/data/imagenet/cls.train.list"); |
|
|
|
|
char **paths = (char **)list_to_array(plist); |
|
|
|
@ -385,8 +389,8 @@ void train_nist(char *cfgfile) |
|
|
|
|
data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10); |
|
|
|
|
network net = parse_network_cfg(cfgfile); |
|
|
|
|
int count = 0; |
|
|
|
|
int iters = 60000/net.batch + 1; |
|
|
|
|
while(++count <= 10){ |
|
|
|
|
int iters = 6000/net.batch + 1; |
|
|
|
|
while(++count <= 100){ |
|
|
|
|
clock_t start = clock(), end; |
|
|
|
|
normalize_data_rows(train); |
|
|
|
|
normalize_data_rows(test); |
|
|
|
|