|
|
|
@ -89,6 +89,31 @@ float delta_region_box(box truth, float *x, float *biases, int n, int index, int |
|
|
|
|
return iou; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void delta_region_class(float *output, float *delta, int index, int class, int classes, tree *hier, float scale, float *avg_cat) |
|
|
|
|
{ |
|
|
|
|
int i, n; |
|
|
|
|
if(hier){ |
|
|
|
|
float pred = 1; |
|
|
|
|
while(class >= 0){ |
|
|
|
|
pred *= output[index + class]; |
|
|
|
|
int g = hier->group[class]; |
|
|
|
|
int offset = hier->group_offset[g]; |
|
|
|
|
for(i = 0; i < hier->group_size[g]; ++i){ |
|
|
|
|
delta[index + offset + i] = scale * (0 - output[index + offset + i]); |
|
|
|
|
} |
|
|
|
|
delta[index + class] = scale * (1 - output[index + class]); |
|
|
|
|
|
|
|
|
|
class = hier->parent[class]; |
|
|
|
|
} |
|
|
|
|
*avg_cat += pred; |
|
|
|
|
} else { |
|
|
|
|
for(n = 0; n < classes; ++n){ |
|
|
|
|
delta[index + n] = scale * (((n == class)?1 : 0) - output[index + n]); |
|
|
|
|
if(n == class) *avg_cat += output[index + n]; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
float logit(float x) |
|
|
|
|
{ |
|
|
|
|
return log(x/(1.-x)); |
|
|
|
@ -125,6 +150,7 @@ void forward_region_layer(const region_layer l, network_state state) |
|
|
|
|
float avg_obj = 0; |
|
|
|
|
float avg_anyobj = 0; |
|
|
|
|
int count = 0; |
|
|
|
|
int class_count = 0; |
|
|
|
|
*(l.cost) = 0; |
|
|
|
|
for (b = 0; b < l.batch; ++b) { |
|
|
|
|
for (j = 0; j < l.h; ++j) { |
|
|
|
@ -133,15 +159,28 @@ void forward_region_layer(const region_layer l, network_state state) |
|
|
|
|
int index = size*(j*l.w*l.n + i*l.n + n) + b*l.outputs; |
|
|
|
|
box pred = get_region_box(l.output, l.biases, n, index, i, j, l.w, l.h); |
|
|
|
|
float best_iou = 0; |
|
|
|
|
int best_class = -1; |
|
|
|
|
for(t = 0; t < 30; ++t){ |
|
|
|
|
box truth = float_to_box(state.truth + t*5 + b*l.truths); |
|
|
|
|
if(!truth.x) break; |
|
|
|
|
float iou = box_iou(pred, truth); |
|
|
|
|
if (iou > best_iou) best_iou = iou; |
|
|
|
|
if (iou > best_iou) { |
|
|
|
|
best_class = state.truth[t*5 + b*l.truths + 4]; |
|
|
|
|
best_iou = iou; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
avg_anyobj += l.output[index + 4]; |
|
|
|
|
l.delta[index + 4] = l.noobject_scale * ((0 - l.output[index + 4]) * logistic_gradient(l.output[index + 4])); |
|
|
|
|
if(best_iou > l.thresh) l.delta[index + 4] = 0; |
|
|
|
|
if(l.classfix == -1) l.delta[index + 4] = l.noobject_scale * ((best_iou - l.output[index + 4]) * logistic_gradient(l.output[index + 4])); |
|
|
|
|
else{ |
|
|
|
|
if (best_iou > l.thresh) { |
|
|
|
|
l.delta[index + 4] = 0; |
|
|
|
|
if(l.classfix > 0){ |
|
|
|
|
delta_region_class(l.output, l.delta, index + 5, best_class, l.classes, l.softmax_tree, l.class_scale*(l.classfix == 2 ? l.output[index + 4] : 1), &avg_cat); |
|
|
|
|
++class_count; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if(*(state.net.seen) < 12800){ |
|
|
|
|
box truth = {0}; |
|
|
|
@ -205,35 +244,15 @@ void forward_region_layer(const region_layer l, network_state state) |
|
|
|
|
|
|
|
|
|
int class = state.truth[t*5 + b*l.truths + 4]; |
|
|
|
|
if (l.map) class = l.map[class]; |
|
|
|
|
if(l.softmax_tree){ |
|
|
|
|
float pred = 1; |
|
|
|
|
while(class >= 0){ |
|
|
|
|
pred *= l.output[best_index + 5 + class]; |
|
|
|
|
int g = l.softmax_tree->group[class]; |
|
|
|
|
int i; |
|
|
|
|
int offset = l.softmax_tree->group_offset[g]; |
|
|
|
|
for(i = 0; i < l.softmax_tree->group_size[g]; ++i){ |
|
|
|
|
int index = best_index + 5 + offset + i; |
|
|
|
|
l.delta[index] = l.class_scale * (0 - l.output[index]); |
|
|
|
|
} |
|
|
|
|
l.delta[best_index + 5 + class] = l.class_scale * (1 - l.output[best_index + 5 + class]); |
|
|
|
|
|
|
|
|
|
class = l.softmax_tree->parent[class]; |
|
|
|
|
} |
|
|
|
|
avg_cat += pred; |
|
|
|
|
} else { |
|
|
|
|
for(n = 0; n < l.classes; ++n){ |
|
|
|
|
l.delta[best_index + 5 + n] = l.class_scale * (((n == class)?1 : 0) - l.output[best_index + 5 + n]); |
|
|
|
|
if(n == class) avg_cat += l.output[best_index + 5 + n]; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
delta_region_class(l.output, l.delta, best_index + 5, class, l.classes, l.softmax_tree, l.class_scale, &avg_cat); |
|
|
|
|
++count; |
|
|
|
|
++class_count; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
//printf("\n");
|
|
|
|
|
reorg(l.delta, l.w*l.h, size*l.n, l.batch, 0); |
|
|
|
|
*(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2); |
|
|
|
|
printf("Region Avg IOU: %f, Class: %f, Obj: %f, No Obj: %f, Avg Recall: %f, count: %d\n", avg_iou/count, avg_cat/count, avg_obj/count, avg_anyobj/(l.w*l.h*l.n*l.batch), recall/count, count); |
|
|
|
|
printf("Region Avg IOU: %f, Class: %f, Obj: %f, No Obj: %f, Avg Recall: %f, count: %d\n", avg_iou/count, avg_cat/class_count, avg_obj/count, avg_anyobj/(l.w*l.h*l.n*l.batch), recall/count, count); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void backward_region_layer(const region_layer l, network_state state) |
|
|
|
@ -245,7 +264,6 @@ void get_region_boxes(layer l, int w, int h, float thresh, float **probs, box *b |
|
|
|
|
{ |
|
|
|
|
int i,j,n; |
|
|
|
|
float *predictions = l.output; |
|
|
|
|
//int per_cell = 5*num+classes;
|
|
|
|
|
for (i = 0; i < l.w*l.h; ++i){ |
|
|
|
|
int row = i / l.w; |
|
|
|
|
int col = i % l.w; |
|
|
|
@ -253,6 +271,7 @@ void get_region_boxes(layer l, int w, int h, float thresh, float **probs, box *b |
|
|
|
|
int index = i*l.n + n; |
|
|
|
|
int p_index = index * (l.classes + 5) + 4; |
|
|
|
|
float scale = predictions[p_index]; |
|
|
|
|
if(l.classfix == -1 && scale < .5) scale = 0; |
|
|
|
|
int box_index = index * (l.classes + 5); |
|
|
|
|
boxes[index] = get_region_box(predictions, l.biases, n, box_index, col, row, l.w, l.h); |
|
|
|
|
boxes[index].x *= w; |
|
|
|
|