mirror of https://github.com/AlexeyAB/darknet.git
parent
eb98da5000
commit
5635523326
5 changed files with 146 additions and 4 deletions
@ -0,0 +1,20 @@ |
||||
mkdir -p images |
||||
mkdir -p images/orig |
||||
mkdir -p images/train |
||||
mkdir -p images/val |
||||
|
||||
ffmpeg -i Face1.mp4 images/orig/face1_%6d.jpg |
||||
ffmpeg -i Face2.mp4 images/orig/face2_%6d.jpg |
||||
ffmpeg -i Face3.mp4 images/orig/face3_%6d.jpg |
||||
ffmpeg -i Face4.mp4 images/orig/face4_%6d.jpg |
||||
ffmpeg -i Face5.mp4 images/orig/face5_%6d.jpg |
||||
ffmpeg -i Face6.mp4 images/orig/face6_%6d.jpg |
||||
|
||||
mogrify -resize 100x100^ -gravity center -crop 100x100+0+0 +repage images/orig/* |
||||
|
||||
ls images/orig/* | shuf | head -n 1000 | xargs mv -t images/val |
||||
mv images/orig/* images/train |
||||
|
||||
find `pwd`/images/train > dice.train.list -name \*.jpg |
||||
find `pwd`/images/val > dice.val.list -name \*.jpg |
||||
|
@ -0,0 +1,118 @@ |
||||
#include "network.h" |
||||
#include "utils.h" |
||||
#include "parser.h" |
||||
|
||||
char *dice_labels[] = {"face1","face2","face3","face4","face5","face6"}; |
||||
|
||||
void train_dice(char *cfgfile, char *weightfile) |
||||
{ |
||||
data_seed = time(0); |
||||
srand(time(0)); |
||||
float avg_loss = -1; |
||||
char *base = basecfg(cfgfile); |
||||
char *backup_directory = "/home/pjreddie/backup/"; |
||||
printf("%s\n", base); |
||||
network net = parse_network_cfg(cfgfile); |
||||
if(weightfile){ |
||||
load_weights(&net, weightfile); |
||||
} |
||||
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
||||
int imgs = 1024; |
||||
int i = net.seen/imgs; |
||||
char **labels = dice_labels; |
||||
list *plist = get_paths("data/dice/dice.train.list"); |
||||
char **paths = (char **)list_to_array(plist); |
||||
printf("%d\n", plist->size); |
||||
clock_t time; |
||||
while(1){ |
||||
++i; |
||||
time=clock(); |
||||
data train = load_data(paths, imgs, plist->size, labels, 6, net.w, net.h); |
||||
printf("Loaded: %lf seconds\n", sec(clock()-time)); |
||||
|
||||
time=clock(); |
||||
float loss = train_network(net, train); |
||||
net.seen += imgs; |
||||
if(avg_loss == -1) avg_loss = loss; |
||||
avg_loss = avg_loss*.9 + loss*.1; |
||||
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), net.seen); |
||||
free_data(train); |
||||
if((i % 100) == 0) net.learning_rate *= .1; |
||||
if(i%100==0){ |
||||
char buff[256]; |
||||
sprintf(buff, "%s/%s_%d.weights",backup_directory,base, i); |
||||
save_weights(net, buff); |
||||
} |
||||
} |
||||
} |
||||
|
||||
void validate_dice(char *filename, char *weightfile) |
||||
{ |
||||
network net = parse_network_cfg(filename); |
||||
if(weightfile){ |
||||
load_weights(&net, weightfile); |
||||
} |
||||
srand(time(0)); |
||||
|
||||
char **labels = dice_labels; |
||||
list *plist = get_paths("data/dice/dice.val.list"); |
||||
|
||||
char **paths = (char **)list_to_array(plist); |
||||
int m = plist->size; |
||||
free_list(plist); |
||||
|
||||
data val = load_data(paths, m, 0, labels, 6, net.w, net.h); |
||||
float *acc = network_accuracies(net, val); |
||||
printf("Validation Accuracy: %f, %d images\n", acc[0], m); |
||||
free_data(val); |
||||
} |
||||
|
||||
void test_dice(char *cfgfile, char *weightfile, char *filename) |
||||
{ |
||||
network net = parse_network_cfg(cfgfile); |
||||
if(weightfile){ |
||||
load_weights(&net, weightfile); |
||||
} |
||||
set_batch_network(&net, 1); |
||||
srand(2222222); |
||||
int i = 0; |
||||
char **names = dice_labels; |
||||
char input[256]; |
||||
int indexes[6]; |
||||
while(1){ |
||||
if(filename){ |
||||
strncpy(input, filename, 256); |
||||
}else{ |
||||
printf("Enter Image Path: "); |
||||
fflush(stdout); |
||||
fgets(input, 256, stdin); |
||||
strtok(input, "\n"); |
||||
} |
||||
image im = load_image_color(input, net.w, net.h); |
||||
float *X = im.data; |
||||
float *predictions = network_predict(net, X); |
||||
top_predictions(net, 6, indexes); |
||||
for(i = 0; i < 6; ++i){ |
||||
int index = indexes[i]; |
||||
printf("%s: %f\n", names[index], predictions[index]); |
||||
} |
||||
free_image(im); |
||||
if (filename) break; |
||||
} |
||||
} |
||||
|
||||
void run_dice(int argc, char **argv) |
||||
{ |
||||
if(argc < 4){ |
||||
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); |
||||
return; |
||||
} |
||||
|
||||
char *cfg = argv[3]; |
||||
char *weights = (argc > 4) ? argv[4] : 0; |
||||
char *filename = (argc > 5) ? argv[5]: 0; |
||||
if(0==strcmp(argv[2], "test")) test_dice(cfg, weights, filename); |
||||
else if(0==strcmp(argv[2], "train")) train_dice(cfg, weights); |
||||
else if(0==strcmp(argv[2], "valid")) validate_dice(cfg, weights); |
||||
} |
||||
|
Loading…
Reference in new issue