|
|
|
@ -16,7 +16,7 @@ int get_detection_layer_output_size(detection_layer layer) |
|
|
|
|
return get_detection_layer_locations(layer)*(layer.background + layer.classes + layer.coords); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
detection_layer *make_detection_layer(int batch, int inputs, int classes, int coords, int rescore, int background) |
|
|
|
|
detection_layer *make_detection_layer(int batch, int inputs, int classes, int coords, int rescore, int background, int nuisance) |
|
|
|
|
{ |
|
|
|
|
detection_layer *layer = calloc(1, sizeof(detection_layer)); |
|
|
|
|
|
|
|
|
@ -25,6 +25,7 @@ detection_layer *make_detection_layer(int batch, int inputs, int classes, int co |
|
|
|
|
layer->classes = classes; |
|
|
|
|
layer->coords = coords; |
|
|
|
|
layer->rescore = rescore; |
|
|
|
|
layer->nuisance = nuisance; |
|
|
|
|
layer->background = background; |
|
|
|
|
int outputs = get_detection_layer_output_size(*layer); |
|
|
|
|
layer->output = calloc(batch*outputs, sizeof(float)); |
|
|
|
@ -72,12 +73,18 @@ void forward_detection_layer(const detection_layer layer, network_state state) |
|
|
|
|
int mask = (!state.truth || state.truth[out_i + layer.background + layer.classes + 2]); |
|
|
|
|
float scale = 1; |
|
|
|
|
if(layer.rescore) scale = state.input[in_i++]; |
|
|
|
|
if(layer.background) layer.output[out_i++] = scale*state.input[in_i++]; |
|
|
|
|
else if(layer.nuisance){ |
|
|
|
|
layer.output[out_i++] = 1-state.input[in_i++]; |
|
|
|
|
scale = mask; |
|
|
|
|
} |
|
|
|
|
else if(layer.background) layer.output[out_i++] = scale*state.input[in_i++]; |
|
|
|
|
|
|
|
|
|
for(j = 0; j < layer.classes; ++j){ |
|
|
|
|
layer.output[out_i++] = scale*state.input[in_i++]; |
|
|
|
|
} |
|
|
|
|
if(layer.background){ |
|
|
|
|
if(layer.nuisance){ |
|
|
|
|
|
|
|
|
|
}else if(layer.background){ |
|
|
|
|
softmax_array(layer.output + out_i - layer.classes-layer.background, layer.classes+layer.background, layer.output + out_i - layer.classes-layer.background); |
|
|
|
|
activate_array(state.input+in_i, layer.coords, LOGISTIC); |
|
|
|
|
} |
|
|
|
@ -85,6 +92,7 @@ void forward_detection_layer(const detection_layer layer, network_state state) |
|
|
|
|
layer.output[out_i++] = mask*state.input[in_i++]; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
/*
|
|
|
|
|
if(layer.background || 1){ |
|
|
|
|
for(i = 0; i < layer.batch*locations; ++i){ |
|
|
|
|
int index = i*(layer.classes+layer.coords+layer.background); |
|
|
|
@ -95,6 +103,7 @@ void forward_detection_layer(const detection_layer layer, network_state state) |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
*/ |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void backward_detection_layer(const detection_layer layer, network_state state) |
|
|
|
@ -107,13 +116,15 @@ void backward_detection_layer(const detection_layer layer, network_state state) |
|
|
|
|
float scale = 1; |
|
|
|
|
float latent_delta = 0; |
|
|
|
|
if(layer.rescore) scale = state.input[in_i++]; |
|
|
|
|
if(layer.background) state.delta[in_i++] = scale*layer.delta[out_i++]; |
|
|
|
|
else if (layer.nuisance) state.delta[in_i++] = -layer.delta[out_i++]; |
|
|
|
|
else if (layer.background) state.delta[in_i++] = scale*layer.delta[out_i++]; |
|
|
|
|
for(j = 0; j < layer.classes; ++j){ |
|
|
|
|
latent_delta += state.input[in_i]*layer.delta[out_i]; |
|
|
|
|
state.delta[in_i++] = scale*layer.delta[out_i++]; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (layer.background) gradient_array(layer.output + out_i, layer.coords, LOGISTIC, layer.delta + out_i); |
|
|
|
|
if (layer.nuisance) ; |
|
|
|
|
else if (layer.background) gradient_array(layer.output + out_i, layer.coords, LOGISTIC, layer.delta + out_i); |
|
|
|
|
for(j = 0; j < layer.coords; ++j){ |
|
|
|
|
state.delta[in_i++] = layer.delta[out_i++]; |
|
|
|
|
} |
|
|
|
|