4. [How to train (Pascal VOC Data)](#how-to-train-pascal-voc-data)
@ -51,10 +54,6 @@ More details: http://pjreddie.com/darknet/yolo/
* **GPU with CC >= 3.0**: https://en.wikipedia.org/wiki/CUDA#GPUs_supported
* on Linux **GCC or Clang**, on Windows **MSVC 2015/2017/2019** https://visualstudio.microsoft.com/thank-you-downloading-visual-studio/?sku=Community
Compiling on **Windows** by using `Cmake-GUI` as on this [**IMAGE**](https://user-images.githubusercontent.com/4096485/55107892-6becf380-50e3-11e9-9a0a-556a943c429a.png): Configure -> Optional platform for generator (Set: x64) -> Finish -> Generate -> Open Project -> x64 & Release -> Build -> Build solution
Compiling on **Linux** by using command `make` (or alternative way by using command: `cmake . && make` )
#### Pre-trained models
There are weights-file for different cfg-files (smaller size -> faster speed & lower accuracy:
@ -171,7 +170,23 @@ On Linux find executable file `./darknet` in the root directory, while on Window
The `CMakeLists.txt` will attempt to find installed optional dependencies like
CUDA, cudnn, ZED and build against those. It will also create a shared object
library file to use `darknet` for code development.
Do inside the cloned repository:
```
mkdir build-release
cd build-release
cmake ..
make
make install
```
### How to compile on Linux (using `make`)
Just do `make` in the darknet directory.
Before make, you can set such options in the `Makefile`: [link](https://github.com/AlexeyAB/darknet/blob/9c1b9a2cf6363546c152251be578a21f3c3caec6/Makefile#L1)
@ -189,9 +204,28 @@ Before make, you can set such options in the `Makefile`: [link](https://github.c
To run Darknet on Linux use examples from this article, just use `./darknet` instead of `darknet.exe`, i.e. use this command: `./darknet detector test ./cfg/coco.data ./cfg/yolov3.cfg ./yolov3.weights`
### How to compile on Windows (using `CMake-GUI`)
This is the recommended approach to build Darknet on Windows if you have already
installed Visual Studio 2015/2017/2019, CUDA > 10.0, cuDNN > 7.0, and
OpenCV > 2.4.
Use `CMake-GUI` as shown here on this [**IMAGE**](https://user-images.githubusercontent.com/4096485/55107892-6becf380-50e3-11e9-9a0a-556a943c429a.png):
1. Configure
2. Optional platform for generator (Set: x64)
3. Finish
4. Generate
5. Open Project
6. Set: x64 & Release
7. Build
8. Build solution
### How to compile on Windows (using `vcpkg`)
If you have already installed Visual Studio 2015/2017/2019, CUDA > 10.0, cuDNN > 7.0, OpenCV > 2.4, then compile Darknet by using `C:\Program Files\CMake\bin\cmake-gui.exe` as on this [**IMAGE**](https://user-images.githubusercontent.com/4096485/55107892-6becf380-50e3-11e9-9a0a-556a943c429a.png): Configure -> Optional platform for generator (Set: x64) -> Finish -> Generate -> Open Project -> x64 & Release -> Build -> Build solution
If you have already installed Visual Studio 2015/2017/2019, CUDA > 10.0,
cuDNN > 7.0, OpenCV > 2.4, then to compile Darknet it is recommended to use