|
|
@ -110,7 +110,7 @@ float delta_region_box(box truth, float *x, float *biases, int n, int index, int |
|
|
|
return iou; |
|
|
|
return iou; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
void delta_region_class(float *output, float *delta, int index, int class_id, int classes, tree *hier, float scale, float *avg_cat) |
|
|
|
void delta_region_class(float *output, float *delta, int index, int class_id, int classes, tree *hier, float scale, float *avg_cat, int focal_loss) |
|
|
|
{ |
|
|
|
{ |
|
|
|
int i, n; |
|
|
|
int i, n; |
|
|
|
if(hier){ |
|
|
|
if(hier){ |
|
|
@ -128,10 +128,30 @@ void delta_region_class(float *output, float *delta, int index, int class_id, in |
|
|
|
} |
|
|
|
} |
|
|
|
*avg_cat += pred; |
|
|
|
*avg_cat += pred; |
|
|
|
} else {
|
|
|
|
} else {
|
|
|
|
for(n = 0; n < classes; ++n){ |
|
|
|
// Focal loss
|
|
|
|
delta[index + n] = scale * (((n == class_id)?1 : 0) - output[index + n]); |
|
|
|
if (focal_loss) { |
|
|
|
if(n == class_id) *avg_cat += output[index + n]; |
|
|
|
// Focal Loss for Dense Object Detection: http://blog.csdn.net/linmingan/article/details/77885832
|
|
|
|
} |
|
|
|
//printf("Used Focal-loss \n");
|
|
|
|
|
|
|
|
float alpha = 0.5; // 0.25
|
|
|
|
|
|
|
|
float gamma = 2.0; |
|
|
|
|
|
|
|
int ti = index + class_id; |
|
|
|
|
|
|
|
float grad = -gamma * (1 - output[ti])*logf(fmaxf(output[ti], 0.0000001))*output[ti] + (1 - output[ti])*(1 - output[ti]); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for (n = 0; n < classes; ++n) { |
|
|
|
|
|
|
|
delta[index + n] = scale * (((n == class_id) ? 1 : 0) - output[index + n]); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
delta[index + n] *= alpha*grad; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (n == class_id) *avg_cat += output[index + n]; |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
else { |
|
|
|
|
|
|
|
// default
|
|
|
|
|
|
|
|
for (n = 0; n < classes; ++n) { |
|
|
|
|
|
|
|
delta[index + n] = scale * (((n == class_id) ? 1 : 0) - output[index + n]); |
|
|
|
|
|
|
|
if (n == class_id) *avg_cat += output[index + n]; |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
@ -209,7 +229,7 @@ void forward_region_layer(const region_layer l, network_state state) |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
int index = size*maxi + b*l.outputs + 5; |
|
|
|
int index = size*maxi + b*l.outputs + 5; |
|
|
|
delta_region_class(l.output, l.delta, index, class_id, l.classes, l.softmax_tree, l.class_scale, &avg_cat); |
|
|
|
delta_region_class(l.output, l.delta, index, class_id, l.classes, l.softmax_tree, l.class_scale, &avg_cat, l.focal_loss); |
|
|
|
++class_count; |
|
|
|
++class_count; |
|
|
|
onlyclass_id = 1; |
|
|
|
onlyclass_id = 1; |
|
|
|
break; |
|
|
|
break; |
|
|
@ -240,7 +260,7 @@ void forward_region_layer(const region_layer l, network_state state) |
|
|
|
if (best_iou > l.thresh) { |
|
|
|
if (best_iou > l.thresh) { |
|
|
|
l.delta[index + 4] = 0; |
|
|
|
l.delta[index + 4] = 0; |
|
|
|
if(l.classfix > 0){ |
|
|
|
if(l.classfix > 0){ |
|
|
|
delta_region_class(l.output, l.delta, index + 5, best_class_id, l.classes, l.softmax_tree, l.class_scale*(l.classfix == 2 ? l.output[index + 4] : 1), &avg_cat); |
|
|
|
delta_region_class(l.output, l.delta, index + 5, best_class_id, l.classes, l.softmax_tree, l.class_scale*(l.classfix == 2 ? l.output[index + 4] : 1), &avg_cat, l.focal_loss); |
|
|
|
++class_count; |
|
|
|
++class_count; |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
@ -312,7 +332,7 @@ void forward_region_layer(const region_layer l, network_state state) |
|
|
|
|
|
|
|
|
|
|
|
int class_id = state.truth[t*5 + b*l.truths + 4]; |
|
|
|
int class_id = state.truth[t*5 + b*l.truths + 4]; |
|
|
|
if (l.map) class_id = l.map[class_id]; |
|
|
|
if (l.map) class_id = l.map[class_id]; |
|
|
|
delta_region_class(l.output, l.delta, best_index + 5, class_id, l.classes, l.softmax_tree, l.class_scale, &avg_cat); |
|
|
|
delta_region_class(l.output, l.delta, best_index + 5, class_id, l.classes, l.softmax_tree, l.class_scale, &avg_cat, l.focal_loss); |
|
|
|
++count; |
|
|
|
++count; |
|
|
|
++class_count; |
|
|
|
++class_count; |
|
|
|
} |
|
|
|
} |
|
|
|