|
|
|
@ -31,14 +31,17 @@ void test_parser() |
|
|
|
|
save_network(net, "cfg/trained_imagenet_smaller.cfg"); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
char *class_names[] = {"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"}; |
|
|
|
|
#define AMNT 3 |
|
|
|
|
void draw_detection(image im, float *box, int side) |
|
|
|
|
{ |
|
|
|
|
int classes = 20; |
|
|
|
|
int elems = 4+classes+1; |
|
|
|
|
int j; |
|
|
|
|
int r, c; |
|
|
|
|
float amount[AMNT] = {0}; |
|
|
|
|
for(r = 0; r < side*side; ++r){ |
|
|
|
|
float val = box[r*5]; |
|
|
|
|
float val = box[r*elems]; |
|
|
|
|
for(j = 0; j < AMNT; ++j){ |
|
|
|
|
if(val > amount[j]) { |
|
|
|
|
float swap = val; |
|
|
|
@ -51,21 +54,29 @@ void draw_detection(image im, float *box, int side) |
|
|
|
|
|
|
|
|
|
for(r = 0; r < side; ++r){ |
|
|
|
|
for(c = 0; c < side; ++c){ |
|
|
|
|
j = (r*side + c) * 5; |
|
|
|
|
printf("Prob: %f\n", box[j]); |
|
|
|
|
j = (r*side + c) * elems; |
|
|
|
|
//printf("%d\n", j);
|
|
|
|
|
//printf("Prob: %f\n", box[j]);
|
|
|
|
|
if(box[j] >= smallest){ |
|
|
|
|
int class = max_index(box+j+1, classes); |
|
|
|
|
int z; |
|
|
|
|
for(z = 0; z < classes; ++z) printf("%f %s\n", box[j+1+z], class_names[z]); |
|
|
|
|
printf("%f %s\n", box[j+1+class], class_names[class]); |
|
|
|
|
float red = get_color(0,class,classes); |
|
|
|
|
float green = get_color(1,class,classes); |
|
|
|
|
float blue = get_color(2,class,classes); |
|
|
|
|
|
|
|
|
|
j += classes; |
|
|
|
|
int d = im.w/side; |
|
|
|
|
int y = r*d+box[j+1]*d; |
|
|
|
|
int x = c*d+box[j+2]*d; |
|
|
|
|
int h = box[j+3]*im.h; |
|
|
|
|
int w = box[j+4]*im.w; |
|
|
|
|
//printf("%f %f %f %f\n", box[j+1], box[j+2], box[j+3], box[j+4]);
|
|
|
|
|
//printf("%d %d %d %d\n", x, y, w, h);
|
|
|
|
|
//printf("%d %d %d %d\n", x-w/2, y-h/2, x+w/2, y+h/2);
|
|
|
|
|
draw_box(im, x-w/2, y-h/2, x+w/2, y+h/2); |
|
|
|
|
draw_box(im, x-w/2, y-h/2, x+w/2, y+h/2,red,green,blue); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
//printf("Done\n");
|
|
|
|
|
show_image(im, "box"); |
|
|
|
|
cvWaitKey(0); |
|
|
|
|
} |
|
|
|
@ -100,24 +111,24 @@ void train_detection_net(char *cfgfile, char *weightfile) |
|
|
|
|
srand(time(0)); |
|
|
|
|
//srand(23410);
|
|
|
|
|
int i = net.seen/imgs; |
|
|
|
|
list *plist = get_paths("/home/pjreddie/data/imagenet/horse_pos.txt"); |
|
|
|
|
list *plist = get_paths("/home/pjreddie/data/voc/train.txt"); |
|
|
|
|
char **paths = (char **)list_to_array(plist); |
|
|
|
|
printf("%d\n", plist->size); |
|
|
|
|
data train, buffer; |
|
|
|
|
int im_dim = 512; |
|
|
|
|
int jitter = 64; |
|
|
|
|
pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, im_dim, im_dim, 7, 7, jitter, &buffer); |
|
|
|
|
pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, 20, im_dim, im_dim, 7, 7, jitter, &buffer); |
|
|
|
|
clock_t time; |
|
|
|
|
while(1){ |
|
|
|
|
i += 1; |
|
|
|
|
time=clock(); |
|
|
|
|
pthread_join(load_thread, 0); |
|
|
|
|
train = buffer; |
|
|
|
|
load_thread = load_data_detection_thread(imgs, paths, plist->size, im_dim, im_dim, 7, 7, jitter, &buffer); |
|
|
|
|
load_thread = load_data_detection_thread(imgs, paths, plist->size, 20, im_dim, im_dim, 7, 7, jitter, &buffer); |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
image im = float_to_image(im_dim - jitter, im_dim-jitter, 3, train.X.vals[923]); |
|
|
|
|
draw_detection(im, train.y.vals[923], 7); |
|
|
|
|
/*
|
|
|
|
|
image im = float_to_image(im_dim - jitter, im_dim-jitter, 3, train.X.vals[0]); |
|
|
|
|
draw_detection(im, train.y.vals[0], 7); |
|
|
|
|
show_image(im, "truth"); |
|
|
|
|
cvWaitKey(0); |
|
|
|
|
*/ |
|
|
|
@ -128,7 +139,7 @@ void train_detection_net(char *cfgfile, char *weightfile) |
|
|
|
|
net.seen += imgs; |
|
|
|
|
avg_loss = avg_loss*.9 + loss*.1; |
|
|
|
|
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs); |
|
|
|
|
if(i%100==0){ |
|
|
|
|
if(i%800==0){ |
|
|
|
|
char buff[256]; |
|
|
|
|
sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i); |
|
|
|
|
save_weights(net, buff); |
|
|
|
@ -146,17 +157,20 @@ void validate_detection_net(char *cfgfile, char *weightfile) |
|
|
|
|
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
|
|
|
|
srand(time(0)); |
|
|
|
|
|
|
|
|
|
list *plist = get_paths("/home/pjreddie/data/imagenet/detection.val"); |
|
|
|
|
list *plist = get_paths("/home/pjreddie/data/voc/val.txt"); |
|
|
|
|
char **paths = (char **)list_to_array(plist); |
|
|
|
|
int num_output = 1225; |
|
|
|
|
int im_size = 448; |
|
|
|
|
int classes = 20; |
|
|
|
|
|
|
|
|
|
int m = plist->size; |
|
|
|
|
int i = 0; |
|
|
|
|
int splits = 50; |
|
|
|
|
int splits = 100; |
|
|
|
|
int num = (i+1)*m/splits - i*m/splits; |
|
|
|
|
|
|
|
|
|
fprintf(stderr, "%d\n", m); |
|
|
|
|
data val, buffer; |
|
|
|
|
pthread_t load_thread = load_data_thread(paths, num, 0, 0, 245, 224, 224, &buffer); |
|
|
|
|
pthread_t load_thread = load_data_thread(paths, num, 0, 0, num_output, im_size, im_size, &buffer); |
|
|
|
|
clock_t time; |
|
|
|
|
for(i = 1; i <= splits; ++i){ |
|
|
|
|
time=clock(); |
|
|
|
@ -165,23 +179,33 @@ void validate_detection_net(char *cfgfile, char *weightfile) |
|
|
|
|
|
|
|
|
|
num = (i+1)*m/splits - i*m/splits; |
|
|
|
|
char **part = paths+(i*m/splits); |
|
|
|
|
if(i != splits) load_thread = load_data_thread(part, num, 0, 0, 245, 224, 224, &buffer); |
|
|
|
|
if(i != splits) load_thread = load_data_thread(part, num, 0, 0, num_output, im_size, im_size, &buffer); |
|
|
|
|
|
|
|
|
|
fprintf(stderr, "Loaded: %lf seconds\n", sec(clock()-time)); |
|
|
|
|
fprintf(stderr, "%d: Loaded: %lf seconds\n", i, sec(clock()-time)); |
|
|
|
|
matrix pred = network_predict_data(net, val); |
|
|
|
|
int j, k; |
|
|
|
|
int j, k, class; |
|
|
|
|
for(j = 0; j < pred.rows; ++j){ |
|
|
|
|
for(k = 0; k < pred.cols; k += 5){ |
|
|
|
|
if (pred.vals[j][k] > .005){ |
|
|
|
|
int index = k/5;
|
|
|
|
|
for(k = 0; k < pred.cols; k += classes+4+1){ |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
int z; |
|
|
|
|
for(z = 0; z < 25; ++z) printf("%f, ", pred.vals[j][k+z]); |
|
|
|
|
printf("\n"); |
|
|
|
|
*/ |
|
|
|
|
|
|
|
|
|
float p = pred.vals[j][k]; |
|
|
|
|
//if (pred.vals[j][k] > .001){
|
|
|
|
|
for(class = 0; class < classes; ++class){ |
|
|
|
|
int index = (k)/(classes+4+1);
|
|
|
|
|
int r = index/7; |
|
|
|
|
int c = index%7; |
|
|
|
|
float y = (32.*(r + pred.vals[j][k+1]))/224.; |
|
|
|
|
float x = (32.*(c + pred.vals[j][k+2]))/224.; |
|
|
|
|
float h = (256.*(pred.vals[j][k+3]))/224.; |
|
|
|
|
float w = (256.*(pred.vals[j][k+4]))/224.; |
|
|
|
|
printf("%d %f %f %f %f %f\n", (i-1)*m/splits + j + 1, pred.vals[j][k], y, x, h, w); |
|
|
|
|
float y = (r + pred.vals[j][k+1+classes])/7.; |
|
|
|
|
float x = (c + pred.vals[j][k+2+classes])/7.; |
|
|
|
|
float h = pred.vals[j][k+3+classes]; |
|
|
|
|
float w = pred.vals[j][k+4+classes]; |
|
|
|
|
printf("%d %d %f %f %f %f %f\n", (i-1)*m/splits + j, class, p*pred.vals[j][k+class+1], y, x, h, w); |
|
|
|
|
} |
|
|
|
|
//}
|
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -191,52 +215,157 @@ void validate_detection_net(char *cfgfile, char *weightfile) |
|
|
|
|
} |
|
|
|
|
/*
|
|
|
|
|
|
|
|
|
|
void train_imagenet_distributed(char *address) |
|
|
|
|
void train_imagenet_distributed(char *address) |
|
|
|
|
{ |
|
|
|
|
float avg_loss = 1; |
|
|
|
|
srand(time(0)); |
|
|
|
|
network net = parse_network_cfg("cfg/net.cfg"); |
|
|
|
|
set_learning_network(&net, 0, 1, 0); |
|
|
|
|
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
|
|
|
|
int imgs = net.batch; |
|
|
|
|
int i = 0; |
|
|
|
|
char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list"); |
|
|
|
|
list *plist = get_paths("/data/imagenet/cls.train.list"); |
|
|
|
|
char **paths = (char **)list_to_array(plist); |
|
|
|
|
printf("%d\n", plist->size); |
|
|
|
|
clock_t time; |
|
|
|
|
data train, buffer; |
|
|
|
|
pthread_t load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 224, 224, &buffer); |
|
|
|
|
while(1){ |
|
|
|
|
i += 1; |
|
|
|
|
|
|
|
|
|
time=clock(); |
|
|
|
|
client_update(net, address); |
|
|
|
|
printf("Updated: %lf seconds\n", sec(clock()-time)); |
|
|
|
|
|
|
|
|
|
time=clock(); |
|
|
|
|
pthread_join(load_thread, 0); |
|
|
|
|
train = buffer; |
|
|
|
|
normalize_data_rows(train); |
|
|
|
|
load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 224, 224, &buffer); |
|
|
|
|
printf("Loaded: %lf seconds\n", sec(clock()-time)); |
|
|
|
|
time=clock(); |
|
|
|
|
|
|
|
|
|
float loss = train_network(net, train); |
|
|
|
|
avg_loss = avg_loss*.9 + loss*.1; |
|
|
|
|
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs); |
|
|
|
|
free_data(train); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
*/ |
|
|
|
|
|
|
|
|
|
void convert(char *cfgfile, char *outfile, char *weightfile) |
|
|
|
|
{ |
|
|
|
|
float avg_loss = 1; |
|
|
|
|
network net = parse_network_cfg(cfgfile); |
|
|
|
|
if(weightfile){ |
|
|
|
|
load_weights(&net, weightfile); |
|
|
|
|
} |
|
|
|
|
save_network(net, outfile); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void train_captcha(char *cfgfile, char *weightfile) |
|
|
|
|
{ |
|
|
|
|
float avg_loss = -1; |
|
|
|
|
srand(time(0)); |
|
|
|
|
network net = parse_network_cfg("cfg/net.cfg"); |
|
|
|
|
set_learning_network(&net, 0, 1, 0); |
|
|
|
|
char *base = basename(cfgfile); |
|
|
|
|
printf("%s\n", base); |
|
|
|
|
network net = parse_network_cfg(cfgfile); |
|
|
|
|
if(weightfile){ |
|
|
|
|
load_weights(&net, weightfile); |
|
|
|
|
} |
|
|
|
|
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
|
|
|
|
int imgs = net.batch; |
|
|
|
|
int i = 0; |
|
|
|
|
char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list"); |
|
|
|
|
list *plist = get_paths("/data/imagenet/cls.train.list"); |
|
|
|
|
int imgs = 1024; |
|
|
|
|
int i = net.seen/imgs; |
|
|
|
|
list *plist = get_paths("/data/captcha/train.list"); |
|
|
|
|
char **paths = (char **)list_to_array(plist); |
|
|
|
|
printf("%d\n", plist->size); |
|
|
|
|
clock_t time; |
|
|
|
|
data train, buffer; |
|
|
|
|
pthread_t load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 224, 224, &buffer); |
|
|
|
|
while(1){ |
|
|
|
|
i += 1; |
|
|
|
|
|
|
|
|
|
time=clock(); |
|
|
|
|
client_update(net, address); |
|
|
|
|
printf("Updated: %lf seconds\n", sec(clock()-time)); |
|
|
|
|
|
|
|
|
|
++i; |
|
|
|
|
time=clock(); |
|
|
|
|
pthread_join(load_thread, 0); |
|
|
|
|
train = buffer; |
|
|
|
|
normalize_data_rows(train); |
|
|
|
|
load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 224, 224, &buffer); |
|
|
|
|
data train = load_data_captcha(paths, imgs, plist->size, 10, 60, 200); |
|
|
|
|
translate_data_rows(train, -128); |
|
|
|
|
scale_data_rows(train, 1./128); |
|
|
|
|
printf("Loaded: %lf seconds\n", sec(clock()-time)); |
|
|
|
|
time=clock(); |
|
|
|
|
|
|
|
|
|
float loss = train_network(net, train); |
|
|
|
|
net.seen += imgs; |
|
|
|
|
if(avg_loss == -1) avg_loss = loss; |
|
|
|
|
avg_loss = avg_loss*.9 + loss*.1; |
|
|
|
|
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs); |
|
|
|
|
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), net.seen); |
|
|
|
|
free_data(train); |
|
|
|
|
if(i%100==0){ |
|
|
|
|
char buff[256]; |
|
|
|
|
sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i); |
|
|
|
|
save_weights(net, buff); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
*/ |
|
|
|
|
|
|
|
|
|
void convert(char *cfgfile, char *outfile, char *weightfile) |
|
|
|
|
|
|
|
|
|
void validate_captcha(char *cfgfile, char *weightfile) |
|
|
|
|
{ |
|
|
|
|
srand(time(0)); |
|
|
|
|
char *base = basename(cfgfile); |
|
|
|
|
printf("%s\n", base); |
|
|
|
|
network net = parse_network_cfg(cfgfile); |
|
|
|
|
if(weightfile){ |
|
|
|
|
load_weights(&net, weightfile); |
|
|
|
|
} |
|
|
|
|
save_network(net, outfile); |
|
|
|
|
int imgs = 1000; |
|
|
|
|
int numchars = 37; |
|
|
|
|
list *plist = get_paths("/data/captcha/valid.list"); |
|
|
|
|
char **paths = (char **)list_to_array(plist); |
|
|
|
|
data valid = load_data_captcha(paths, imgs, 0, 10, 60, 200); |
|
|
|
|
translate_data_rows(valid, -128); |
|
|
|
|
scale_data_rows(valid, 1./128); |
|
|
|
|
matrix pred = network_predict_data(net, valid); |
|
|
|
|
int i, k; |
|
|
|
|
int correct = 0; |
|
|
|
|
int total = 0; |
|
|
|
|
int accuracy = 0; |
|
|
|
|
for(i = 0; i < imgs; ++i){ |
|
|
|
|
int allcorrect = 1; |
|
|
|
|
for(k = 0; k < 10; ++k){ |
|
|
|
|
char truth = int_to_alphanum(max_index(valid.y.vals[i]+k*numchars, numchars)); |
|
|
|
|
char prediction = int_to_alphanum(max_index(pred.vals[i]+k*numchars, numchars)); |
|
|
|
|
if (truth != prediction) allcorrect=0; |
|
|
|
|
if (truth != '.' && truth == prediction) ++correct; |
|
|
|
|
if (truth != '.' || truth != prediction) ++total; |
|
|
|
|
} |
|
|
|
|
accuracy += allcorrect; |
|
|
|
|
} |
|
|
|
|
printf("Word Accuracy: %f, Char Accuracy %f\n", (float)accuracy/imgs, (float)correct/total); |
|
|
|
|
free_data(valid); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void test_captcha(char *cfgfile, char *weightfile) |
|
|
|
|
{ |
|
|
|
|
srand(time(0)); |
|
|
|
|
char *base = basename(cfgfile); |
|
|
|
|
printf("%s\n", base); |
|
|
|
|
network net = parse_network_cfg(cfgfile); |
|
|
|
|
set_batch_network(&net, 1); |
|
|
|
|
if(weightfile){ |
|
|
|
|
load_weights(&net, weightfile); |
|
|
|
|
} |
|
|
|
|
clock_t time; |
|
|
|
|
char filename[256]; |
|
|
|
|
while(1){ |
|
|
|
|
printf("Enter filename: "); |
|
|
|
|
fgets(filename, 256, stdin); |
|
|
|
|
strtok(filename, "\n"); |
|
|
|
|
time = clock(); |
|
|
|
|
image im = load_image_color(filename, 60, 200); |
|
|
|
|
translate_image(im, -128); |
|
|
|
|
scale_image(im, 1/128.); |
|
|
|
|
float *X = im.data; |
|
|
|
|
time=clock(); |
|
|
|
|
float *predictions = network_predict(net, X); |
|
|
|
|
printf("Predicted in %f\n", sec(clock() - time)); |
|
|
|
|
print_letters(predictions, 10); |
|
|
|
|
free_image(im); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void train_imagenet(char *cfgfile, char *weightfile) |
|
|
|
@ -333,6 +462,7 @@ void test_detection(char *cfgfile, char *weightfile) |
|
|
|
|
if(weightfile){ |
|
|
|
|
load_weights(&net, weightfile); |
|
|
|
|
} |
|
|
|
|
int im_size = 224; |
|
|
|
|
set_batch_network(&net, 1); |
|
|
|
|
srand(2222222); |
|
|
|
|
clock_t time; |
|
|
|
@ -340,7 +470,7 @@ void test_detection(char *cfgfile, char *weightfile) |
|
|
|
|
while(1){ |
|
|
|
|
fgets(filename, 256, stdin); |
|
|
|
|
strtok(filename, "\n"); |
|
|
|
|
image im = load_image_color(filename, 224, 224); |
|
|
|
|
image im = load_image_color(filename, im_size, im_size); |
|
|
|
|
translate_image(im, -128); |
|
|
|
|
scale_image(im, 1/128.); |
|
|
|
|
printf("%d %d %d\n", im.h, im.w, im.c); |
|
|
|
@ -814,6 +944,9 @@ int main(int argc, char **argv) |
|
|
|
|
else if(0==strcmp(argv[1], "nist")) train_nist(argv[2]); |
|
|
|
|
else if(0==strcmp(argv[1], "ctest")) test_cifar10(argv[2]); |
|
|
|
|
else if(0==strcmp(argv[1], "train")) train_imagenet(argv[2], (argc > 3)? argv[3] : 0); |
|
|
|
|
else if(0==strcmp(argv[1], "captcha")) train_captcha(argv[2], (argc > 3)? argv[3] : 0); |
|
|
|
|
else if(0==strcmp(argv[1], "tcaptcha")) test_captcha(argv[2], (argc > 3)? argv[3] : 0); |
|
|
|
|
else if(0==strcmp(argv[1], "vcaptcha")) validate_captcha(argv[2], (argc > 3)? argv[3] : 0); |
|
|
|
|
else if(0==strcmp(argv[1], "testseg")) test_voc_segment(argv[2], (argc > 3)? argv[3] : 0); |
|
|
|
|
//else if(0==strcmp(argv[1], "client")) train_imagenet_distributed(argv[2]);
|
|
|
|
|
else if(0==strcmp(argv[1], "detect")) test_detection(argv[2], (argc > 3)? argv[3] : 0); |
|
|
|
|