|
|
|
@ -55,13 +55,13 @@ connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVA |
|
|
|
|
return layer; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void update_connected_layer(connected_layer layer, float learning_rate, float momentum, float decay) |
|
|
|
|
void update_connected_layer(connected_layer layer, int batch, float learning_rate, float momentum, float decay) |
|
|
|
|
{ |
|
|
|
|
axpy_cpu(layer.outputs, learning_rate, layer.bias_updates, 1, layer.biases, 1); |
|
|
|
|
axpy_cpu(layer.outputs, learning_rate/batch, layer.bias_updates, 1, layer.biases, 1); |
|
|
|
|
scal_cpu(layer.outputs, momentum, layer.bias_updates, 1); |
|
|
|
|
|
|
|
|
|
axpy_cpu(layer.inputs*layer.outputs, -decay, layer.weights, 1, layer.weight_updates, 1); |
|
|
|
|
axpy_cpu(layer.inputs*layer.outputs, learning_rate, layer.weight_updates, 1, layer.weights, 1); |
|
|
|
|
axpy_cpu(layer.inputs*layer.outputs, -decay*batch, layer.weights, 1, layer.weight_updates, 1); |
|
|
|
|
axpy_cpu(layer.inputs*layer.outputs, learning_rate/batch, layer.weight_updates, 1, layer.weights, 1); |
|
|
|
|
scal_cpu(layer.inputs*layer.outputs, momentum, layer.weight_updates, 1); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -84,10 +84,9 @@ void forward_connected_layer(connected_layer layer, network_state state) |
|
|
|
|
void backward_connected_layer(connected_layer layer, network_state state) |
|
|
|
|
{ |
|
|
|
|
int i; |
|
|
|
|
float alpha = 1./layer.batch; |
|
|
|
|
gradient_array(layer.output, layer.outputs*layer.batch, layer.activation, layer.delta); |
|
|
|
|
for(i = 0; i < layer.batch; ++i){ |
|
|
|
|
axpy_cpu(layer.outputs, alpha, layer.delta + i*layer.outputs, 1, layer.bias_updates, 1); |
|
|
|
|
axpy_cpu(layer.outputs, 1, layer.delta + i*layer.outputs, 1, layer.bias_updates, 1); |
|
|
|
|
} |
|
|
|
|
int m = layer.inputs; |
|
|
|
|
int k = layer.batch; |
|
|
|
@ -95,7 +94,7 @@ void backward_connected_layer(connected_layer layer, network_state state) |
|
|
|
|
float *a = state.input; |
|
|
|
|
float *b = layer.delta; |
|
|
|
|
float *c = layer.weight_updates; |
|
|
|
|
gemm(1,0,m,n,k,alpha,a,m,b,n,1,c,n); |
|
|
|
|
gemm(1,0,m,n,k,1,a,m,b,n,1,c,n); |
|
|
|
|
|
|
|
|
|
m = layer.batch; |
|
|
|
|
k = layer.outputs; |
|
|
|
@ -126,13 +125,13 @@ void push_connected_layer(connected_layer layer) |
|
|
|
|
cuda_push_array(layer.bias_updates_gpu, layer.bias_updates, layer.outputs); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void update_connected_layer_gpu(connected_layer layer, float learning_rate, float momentum, float decay) |
|
|
|
|
void update_connected_layer_gpu(connected_layer layer, int batch, float learning_rate, float momentum, float decay) |
|
|
|
|
{ |
|
|
|
|
axpy_ongpu(layer.outputs, learning_rate, layer.bias_updates_gpu, 1, layer.biases_gpu, 1); |
|
|
|
|
axpy_ongpu(layer.outputs, learning_rate/batch, layer.bias_updates_gpu, 1, layer.biases_gpu, 1); |
|
|
|
|
scal_ongpu(layer.outputs, momentum, layer.bias_updates_gpu, 1); |
|
|
|
|
|
|
|
|
|
axpy_ongpu(layer.inputs*layer.outputs, -decay, layer.weights_gpu, 1, layer.weight_updates_gpu, 1); |
|
|
|
|
axpy_ongpu(layer.inputs*layer.outputs, learning_rate, layer.weight_updates_gpu, 1, layer.weights_gpu, 1); |
|
|
|
|
axpy_ongpu(layer.inputs*layer.outputs, -decay*batch, layer.weights_gpu, 1, layer.weight_updates_gpu, 1); |
|
|
|
|
axpy_ongpu(layer.inputs*layer.outputs, learning_rate/batch, layer.weight_updates_gpu, 1, layer.weights_gpu, 1); |
|
|
|
|
scal_ongpu(layer.inputs*layer.outputs, momentum, layer.weight_updates_gpu, 1); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -154,11 +153,10 @@ void forward_connected_layer_gpu(connected_layer layer, network_state state) |
|
|
|
|
|
|
|
|
|
void backward_connected_layer_gpu(connected_layer layer, network_state state) |
|
|
|
|
{ |
|
|
|
|
float alpha = 1./layer.batch; |
|
|
|
|
int i; |
|
|
|
|
gradient_array_ongpu(layer.output_gpu, layer.outputs*layer.batch, layer.activation, layer.delta_gpu); |
|
|
|
|
for(i = 0; i < layer.batch; ++i){ |
|
|
|
|
axpy_ongpu_offset(layer.outputs, alpha, layer.delta_gpu, i*layer.outputs, 1, layer.bias_updates_gpu, 0, 1); |
|
|
|
|
axpy_ongpu_offset(layer.outputs, 1, layer.delta_gpu, i*layer.outputs, 1, layer.bias_updates_gpu, 0, 1); |
|
|
|
|
} |
|
|
|
|
int m = layer.inputs; |
|
|
|
|
int k = layer.batch; |
|
|
|
@ -166,7 +164,7 @@ void backward_connected_layer_gpu(connected_layer layer, network_state state) |
|
|
|
|
float * a = state.input; |
|
|
|
|
float * b = layer.delta_gpu; |
|
|
|
|
float * c = layer.weight_updates_gpu; |
|
|
|
|
gemm_ongpu(1,0,m,n,k,alpha,a,m,b,n,1,c,n); |
|
|
|
|
gemm_ongpu(1,0,m,n,k,1,a,m,b,n,1,c,n); |
|
|
|
|
|
|
|
|
|
m = layer.batch; |
|
|
|
|
k = layer.outputs; |
|
|
|
|