|
|
|
@ -23,13 +23,15 @@ |
|
|
|
|
image get_image_from_stream(CvCapture *cap); |
|
|
|
|
image get_image_from_stream_cpp(CvCapture *cap); |
|
|
|
|
#include "http_stream.h" |
|
|
|
|
|
|
|
|
|
IplImage* draw_train_chart(float max_img_loss, int max_batches, int number_of_lines, int img_size, int dont_show); |
|
|
|
|
|
|
|
|
|
void draw_train_loss(IplImage* img, int img_size, float avg_loss, float max_img_loss, int current_batch, int max_batches, |
|
|
|
|
float precision, int draw_precision, int dont_show, int mjpeg_port); |
|
|
|
|
float precision, int draw_precision, char *accuracy_name, int dont_show, int mjpeg_port); |
|
|
|
|
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
float validate_classifier_single(char *datacfg, char *filename, char *weightfile, network *existing_net, int topk_custom); |
|
|
|
|
|
|
|
|
|
float *get_regression_values(char **labels, int n) |
|
|
|
|
{ |
|
|
|
|
float *v = calloc(n, sizeof(float)); |
|
|
|
@ -42,7 +44,7 @@ float *get_regression_values(char **labels, int n) |
|
|
|
|
return v; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void train_classifier(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear, int dont_show, int mjpeg_port) |
|
|
|
|
void train_classifier(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear, int dont_show, int mjpeg_port, int calc_topk) |
|
|
|
|
{ |
|
|
|
|
int i; |
|
|
|
|
|
|
|
|
@ -83,7 +85,7 @@ void train_classifier(char *datacfg, char *cfgfile, char *weightfile, int *gpus, |
|
|
|
|
list *plist = get_paths(train_list); |
|
|
|
|
char **paths = (char **)list_to_array(plist); |
|
|
|
|
printf("%d\n", plist->size); |
|
|
|
|
int N = plist->size; |
|
|
|
|
int train_images_num = plist->size; |
|
|
|
|
clock_t time; |
|
|
|
|
|
|
|
|
|
load_args args = {0}; |
|
|
|
@ -105,14 +107,14 @@ void train_classifier(char *datacfg, char *cfgfile, char *weightfile, int *gpus, |
|
|
|
|
args.paths = paths; |
|
|
|
|
args.classes = classes; |
|
|
|
|
args.n = imgs; |
|
|
|
|
args.m = N; |
|
|
|
|
args.m = train_images_num; |
|
|
|
|
args.labels = labels; |
|
|
|
|
args.type = CLASSIFICATION_DATA; |
|
|
|
|
|
|
|
|
|
#ifdef OPENCV |
|
|
|
|
//args.threads = 3;
|
|
|
|
|
IplImage* img = NULL; |
|
|
|
|
float max_img_loss = 5; |
|
|
|
|
float max_img_loss = 10; |
|
|
|
|
int number_of_lines = 100; |
|
|
|
|
int img_size = 1000; |
|
|
|
|
img = draw_train_chart(max_img_loss, net.max_batches, number_of_lines, img_size, dont_show); |
|
|
|
@ -126,6 +128,8 @@ void train_classifier(char *datacfg, char *cfgfile, char *weightfile, int *gpus, |
|
|
|
|
|
|
|
|
|
int iter_save = get_current_batch(net); |
|
|
|
|
int iter_save_last = get_current_batch(net); |
|
|
|
|
int iter_topk = get_current_batch(net); |
|
|
|
|
float topk = 0; |
|
|
|
|
|
|
|
|
|
while(get_current_batch(net) < net.max_batches || net.max_batches == 0){ |
|
|
|
|
time=clock(); |
|
|
|
@ -152,9 +156,32 @@ void train_classifier(char *datacfg, char *cfgfile, char *weightfile, int *gpus, |
|
|
|
|
|
|
|
|
|
i = get_current_batch(net); |
|
|
|
|
|
|
|
|
|
printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen); |
|
|
|
|
int calc_topk_for_each = iter_topk + 4 * train_images_num / (net.batch * net.subdivisions); // calculate TOPk for each 4 Epochs
|
|
|
|
|
calc_topk_for_each = fmax(calc_topk_for_each, net.burn_in); |
|
|
|
|
calc_topk_for_each = fmax(calc_topk_for_each, 1000); |
|
|
|
|
if (i % 10 == 0) { |
|
|
|
|
if (calc_topk) { |
|
|
|
|
fprintf(stderr, "\n (next TOP5 calculation at %d iterations) ", calc_topk_for_each); |
|
|
|
|
if (topk > 0) fprintf(stderr, " Last accuracy TOP5 = %2.2f %% \n", topk * 100); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (net.cudnn_half) { |
|
|
|
|
if (i < net.burn_in * 3) fprintf(stderr, " Tensor Cores are disabled until the first %d iterations are reached.\n", 3 * net.burn_in); |
|
|
|
|
else fprintf(stderr, " Tensor Cores are used.\n"); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
int draw_precision = 0; |
|
|
|
|
if (calc_topk && (i >= calc_topk_for_each || i == net.max_batches)) { |
|
|
|
|
iter_topk = i; |
|
|
|
|
topk = validate_classifier_single(datacfg, cfgfile, weightfile, &net, 5); // calc TOP5
|
|
|
|
|
printf("\n accuracy TOP5 = %f \n", topk); |
|
|
|
|
draw_precision = 1; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/ train_images_num, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen); |
|
|
|
|
#ifdef OPENCV |
|
|
|
|
draw_train_loss(img, img_size, avg_loss, max_img_loss, i, net.max_batches, -1, 0, dont_show, mjpeg_port); |
|
|
|
|
draw_train_loss(img, img_size, avg_loss, max_img_loss, i, net.max_batches, topk, draw_precision, "top5", dont_show, mjpeg_port); |
|
|
|
|
#endif // OPENCV
|
|
|
|
|
|
|
|
|
|
if (i >= (iter_save + 1000)) { |
|
|
|
@ -512,14 +539,25 @@ void validate_classifier_full(char *datacfg, char *filename, char *weightfile) |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void validate_classifier_single(char *datacfg, char *filename, char *weightfile) |
|
|
|
|
float validate_classifier_single(char *datacfg, char *filename, char *weightfile, network *existing_net, int topk_custom) |
|
|
|
|
{ |
|
|
|
|
int i, j; |
|
|
|
|
network net = parse_network_cfg(filename); |
|
|
|
|
network net; |
|
|
|
|
int old_batch = -1; |
|
|
|
|
if (existing_net) { |
|
|
|
|
net = *existing_net; // for validation during training
|
|
|
|
|
old_batch = net.batch; |
|
|
|
|
set_batch_network(&net, 1); |
|
|
|
|
} |
|
|
|
|
else { |
|
|
|
|
net = parse_network_cfg_custom(filename, 1, 0); |
|
|
|
|
if (weightfile) { |
|
|
|
|
load_weights(&net, weightfile); |
|
|
|
|
} |
|
|
|
|
set_batch_network(&net, 1); |
|
|
|
|
//set_batch_network(&net, 1);
|
|
|
|
|
fuse_conv_batchnorm(net); |
|
|
|
|
calculate_binary_weights(net); |
|
|
|
|
} |
|
|
|
|
srand(time(0)); |
|
|
|
|
|
|
|
|
|
list *options = read_data_cfg(datacfg); |
|
|
|
@ -530,7 +568,9 @@ void validate_classifier_single(char *datacfg, char *filename, char *weightfile) |
|
|
|
|
char *valid_list = option_find_str(options, "valid", "data/train.list"); |
|
|
|
|
int classes = option_find_int(options, "classes", 2); |
|
|
|
|
int topk = option_find_int(options, "top", 1); |
|
|
|
|
if (topk_custom > 0) topk = topk_custom; // for validation during training
|
|
|
|
|
if (topk > classes) topk = classes; |
|
|
|
|
printf(" TOP calculation...\n"); |
|
|
|
|
|
|
|
|
|
char **labels = get_labels(label_list); |
|
|
|
|
list *plist = get_paths(valid_list); |
|
|
|
@ -571,8 +611,15 @@ void validate_classifier_single(char *datacfg, char *filename, char *weightfile) |
|
|
|
|
if(indexes[j] == class_id) avg_topk += 1; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
printf("%d: top 1: %f, top %d: %f\n", i, avg_acc/(i+1), topk, avg_topk/(i+1)); |
|
|
|
|
if (existing_net) printf("\r"); |
|
|
|
|
else printf("\n"); |
|
|
|
|
printf("%d: top 1: %f, top %d: %f", i, avg_acc/(i+1), topk, avg_topk/(i+1)); |
|
|
|
|
} |
|
|
|
|
if (existing_net) { |
|
|
|
|
set_batch_network(&net, old_batch); |
|
|
|
|
} |
|
|
|
|
float topk_result = avg_topk / i; |
|
|
|
|
return topk_result; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void validate_classifier_multi(char *datacfg, char *filename, char *weightfile) |
|
|
|
@ -1198,6 +1245,7 @@ void run_classifier(int argc, char **argv) |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
int mjpeg_port = find_int_arg(argc, argv, "-mjpeg_port", -1); |
|
|
|
|
int calc_topk = find_int_arg(argc, argv, "-topk", -1); |
|
|
|
|
char *gpu_list = find_char_arg(argc, argv, "-gpus", 0); |
|
|
|
|
int *gpus = 0; |
|
|
|
|
int gpu = 0; |
|
|
|
@ -1233,13 +1281,13 @@ void run_classifier(int argc, char **argv) |
|
|
|
|
int layer = layer_s ? atoi(layer_s) : -1; |
|
|
|
|
if(0==strcmp(argv[2], "predict")) predict_classifier(data, cfg, weights, filename, top); |
|
|
|
|
else if(0==strcmp(argv[2], "try")) try_classifier(data, cfg, weights, filename, atoi(layer_s)); |
|
|
|
|
else if(0==strcmp(argv[2], "train")) train_classifier(data, cfg, weights, gpus, ngpus, clear, dont_show, mjpeg_port); |
|
|
|
|
else if(0==strcmp(argv[2], "train")) train_classifier(data, cfg, weights, gpus, ngpus, clear, dont_show, mjpeg_port, calc_topk); |
|
|
|
|
else if(0==strcmp(argv[2], "demo")) demo_classifier(data, cfg, weights, cam_index, filename); |
|
|
|
|
else if(0==strcmp(argv[2], "gun")) gun_classifier(data, cfg, weights, cam_index, filename); |
|
|
|
|
else if(0==strcmp(argv[2], "threat")) threat_classifier(data, cfg, weights, cam_index, filename); |
|
|
|
|
else if(0==strcmp(argv[2], "test")) test_classifier(data, cfg, weights, layer); |
|
|
|
|
else if(0==strcmp(argv[2], "label")) label_classifier(data, cfg, weights); |
|
|
|
|
else if(0==strcmp(argv[2], "valid")) validate_classifier_single(data, cfg, weights); |
|
|
|
|
else if(0==strcmp(argv[2], "valid")) validate_classifier_single(data, cfg, weights, NULL, -1); |
|
|
|
|
else if(0==strcmp(argv[2], "validmulti")) validate_classifier_multi(data, cfg, weights); |
|
|
|
|
else if(0==strcmp(argv[2], "valid10")) validate_classifier_10(data, cfg, weights); |
|
|
|
|
else if(0==strcmp(argv[2], "validcrop")) validate_classifier_crop(data, cfg, weights); |
|
|
|
|