diff --git a/src/blas.c b/src/blas.c index c619256c..1f769280 100644 --- a/src/blas.c +++ b/src/blas.c @@ -515,3 +515,95 @@ void fix_nan_and_inf_cpu(float *input, size_t size) input[i] = 1.0f / i; // pseudo random value } } + + +float cosine_similarity(float *A, float *B, unsigned int feature_size) +{ + float mul = 0.0, d_a = 0.0, d_b = 0.0; + + for (unsigned int i = 0; i < feature_size; ++i) + { + mul += A[i] * B[i]; + d_a += A[i] * A[i]; + d_b += B[i] * B[i]; + } + float similarity; + float divider = sqrt(d_a) * sqrt(d_b); + if (divider > 0) similarity = mul / divider; + else similarity = 0; + + return similarity; +} + +// num_of_samples = 2 * loaded_images = mini_batch_size + +float P_constrastive(int i, int l, int num_of_samples, float **z, unsigned int feature_size, float temperature) +{ + if (i == l) { + printf(" Error: in P_constrastive must be i != l, while i = %d, l = %d \n", i, l); + getchar(); + } + + const float sim = cosine_similarity(z[i], z[l], feature_size); + const float numerator = expf(sim / temperature); + + float denominator = 0; + int k; + for (k = 0; k < num_of_samples; ++k) { + if (k != i) { + const float sim_den = cosine_similarity(z[k], z[l], feature_size); + denominator += expf(sim_den / temperature); + } + } + + float result = numerator / denominator; + return result; +} + +// i - id of the current sample in mini_batch +// labels[num_of_samples] - array with class_id for each sample in the current mini_batch +// z[feature_size][num_of_samples] - array of arrays with contrastive features (output of conv-layer, f.e. 128 floats for each sample) +// delta[feature_size] - array with deltas for backpropagation +// temperature - scalar temperature param (temperature > 0), f.e. temperature = 0.07: Supervised Contrastive Learning +void grad_contrastive_loss_positive(int i, int *labels, int num_of_samples, float **z, unsigned int feature_size, float temperature, float *delta) +{ + int j; + for (j = 0; j < num_of_samples; ++j) { + if (i != j && labels[i] == labels[j]) { + const double sim = cosine_similarity(z[i], z[j], feature_size); + const double P = P_constrastive(i, j, num_of_samples, z, feature_size, temperature); + + int m; + for (m = 0; m < feature_size; ++m) { + delta[m] += (sim * z[i][m] - z[j][m]) * (1 - P); + } + } + } +} + +// i - id of the current sample in mini_batch +// labels[num_of_samples] - array with class_id for each sample in the current mini_batch +// z[feature_size][num_of_samples] - array of arrays with contrastive features (output of conv-layer, f.e. 128 floats for each sample) +// delta[feature_size] - array with deltas for backpropagation +// temperature - scalar temperature param (temperature > 0), f.e. temperature = 0.07: Supervised Contrastive Learning +void grad_contrastive_loss_negative(int i, int *labels, int num_of_samples, float **z, unsigned int feature_size, float temperature, float *delta) +{ + int j; + for (j = 0; j < num_of_samples; ++j) { + if (i != j && labels[i] == labels[j]) { + + int k; + for (k = 0; k < num_of_samples; ++k) { + if (k != i && k != j) { + const double sim = cosine_similarity(z[i], z[k], feature_size); + const double P = P_constrastive(i, k, num_of_samples, z, feature_size, temperature); + + int m; + for (m = 0; m < feature_size; ++m) { + delta[m] += (z[k][m] - sim * z[i][m]) * P; + } + } + } + } + } +} \ No newline at end of file diff --git a/src/blas.h b/src/blas.h index 945d3919..473ac089 100644 --- a/src/blas.h +++ b/src/blas.h @@ -154,6 +154,11 @@ void rotate_weights_gpu(const float *src_weight_gpu, float *weight_deform_gpu, i void reduce_and_expand_array_gpu(const float *src_gpu, float *dst_gpu, int size, int groups); void expand_array_gpu(const float *src_gpu, float *dst_gpu, int size, int groups); +float cosine_similarity(float *A, float *B, unsigned int feature_size); +float P_constrastive(int i, int l, int num_of_samples, float **z, unsigned int feature_size, float temperature); +void grad_contrastive_loss_positive(int i, int *labels, int num_of_samples, float **z, unsigned int feature_size, float temperature, float *delta); +void grad_contrastive_loss_negative(int i, int *labels, int num_of_samples, float **z, unsigned int feature_size, float temperature, float *delta); + #endif #ifdef __cplusplus }