|
|
|
@ -17,7 +17,7 @@ __global__ void bias_output_kernel(float *output, float *biases, int n, int size |
|
|
|
|
if(offset < size) output[(batch*n+filter)*size + offset] = biases[filter]; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
extern "C" void bias_output_gpu(float *output, float *biases, int batch, int n, int size) |
|
|
|
|
void bias_output_gpu(float *output, float *biases, int batch, int n, int size) |
|
|
|
|
{ |
|
|
|
|
dim3 dimBlock(BLOCK, 1, 1); |
|
|
|
|
dim3 dimGrid((size-1)/BLOCK + 1, n, batch); |
|
|
|
@ -46,13 +46,13 @@ __global__ void backward_bias_kernel(float *bias_updates, float *delta, int batc |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
extern "C" void backward_bias_gpu(float *bias_updates, float *delta, int batch, int n, int size) |
|
|
|
|
void backward_bias_gpu(float *bias_updates, float *delta, int batch, int n, int size) |
|
|
|
|
{ |
|
|
|
|
backward_bias_kernel<<<n, BLOCK>>>(bias_updates, delta, batch, n, size, 1); |
|
|
|
|
check_error(cudaPeekAtLastError()); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
extern "C" void forward_convolutional_layer_gpu(convolutional_layer layer, network_state state) |
|
|
|
|
void forward_convolutional_layer_gpu(convolutional_layer layer, network_state state) |
|
|
|
|
{ |
|
|
|
|
int i; |
|
|
|
|
int m = layer.n; |
|
|
|
@ -71,7 +71,7 @@ extern "C" void forward_convolutional_layer_gpu(convolutional_layer layer, netwo |
|
|
|
|
activate_array_ongpu(layer.output_gpu, m*n*layer.batch, layer.activation); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
extern "C" void backward_convolutional_layer_gpu(convolutional_layer layer, network_state state) |
|
|
|
|
void backward_convolutional_layer_gpu(convolutional_layer layer, network_state state) |
|
|
|
|
{ |
|
|
|
|
int i; |
|
|
|
|
int m = layer.n; |
|
|
|
@ -105,7 +105,7 @@ extern "C" void backward_convolutional_layer_gpu(convolutional_layer layer, netw |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
extern "C" void pull_convolutional_layer(convolutional_layer layer) |
|
|
|
|
void pull_convolutional_layer(convolutional_layer layer) |
|
|
|
|
{ |
|
|
|
|
cuda_pull_array(layer.filters_gpu, layer.filters, layer.c*layer.n*layer.size*layer.size); |
|
|
|
|
cuda_pull_array(layer.biases_gpu, layer.biases, layer.n); |
|
|
|
@ -113,7 +113,7 @@ extern "C" void pull_convolutional_layer(convolutional_layer layer) |
|
|
|
|
cuda_pull_array(layer.bias_updates_gpu, layer.bias_updates, layer.n); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
extern "C" void push_convolutional_layer(convolutional_layer layer) |
|
|
|
|
void push_convolutional_layer(convolutional_layer layer) |
|
|
|
|
{ |
|
|
|
|
cuda_push_array(layer.filters_gpu, layer.filters, layer.c*layer.n*layer.size*layer.size); |
|
|
|
|
cuda_push_array(layer.biases_gpu, layer.biases, layer.n); |
|
|
|
@ -121,7 +121,7 @@ extern "C" void push_convolutional_layer(convolutional_layer layer) |
|
|
|
|
cuda_push_array(layer.bias_updates_gpu, layer.bias_updates, layer.n); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
extern "C" void update_convolutional_layer_gpu(convolutional_layer layer, int batch, float learning_rate, float momentum, float decay) |
|
|
|
|
void update_convolutional_layer_gpu(convolutional_layer layer, int batch, float learning_rate, float momentum, float decay) |
|
|
|
|
{ |
|
|
|
|
int size = layer.size*layer.size*layer.c*layer.n; |
|
|
|
|
|
|
|
|
|