|
|
@ -515,10 +515,13 @@ convolutional_layer make_convolutional_layer(int batch, int steps, int h, int w, |
|
|
|
l.x = (float*)calloc(total_batch * l.outputs, sizeof(float)); |
|
|
|
l.x = (float*)calloc(total_batch * l.outputs, sizeof(float)); |
|
|
|
l.x_norm = (float*)calloc(total_batch * l.outputs, sizeof(float)); |
|
|
|
l.x_norm = (float*)calloc(total_batch * l.outputs, sizeof(float)); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
if (l.activation == SWISH || l.activation == MISH) l.activation_input = (float*)calloc(total_batch*l.outputs, sizeof(float)); |
|
|
|
|
|
|
|
#endif // not GPU
|
|
|
|
#endif // not GPU
|
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#ifndef GPU |
|
|
|
|
|
|
|
if (l.activation == SWISH || l.activation == MISH) l.activation_input = (float*)calloc(total_batch*l.outputs, sizeof(float)); |
|
|
|
|
|
|
|
#endif // not GPU
|
|
|
|
|
|
|
|
|
|
|
|
if(adam){ |
|
|
|
if(adam){ |
|
|
|
l.adam = 1; |
|
|
|
l.adam = 1; |
|
|
|
l.m = (float*)calloc(l.nweights, sizeof(float)); |
|
|
|
l.m = (float*)calloc(l.nweights, sizeof(float)); |
|
|
|