|
|
|
@ -26,7 +26,6 @@ connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVA |
|
|
|
|
|
|
|
|
|
layer->weight_updates = calloc(inputs*outputs, sizeof(float)); |
|
|
|
|
//layer->weight_adapt = calloc(inputs*outputs, sizeof(float));
|
|
|
|
|
layer->weight_momentum = calloc(inputs*outputs, sizeof(float)); |
|
|
|
|
layer->weights = calloc(inputs*outputs, sizeof(float)); |
|
|
|
|
float scale = 1./inputs; |
|
|
|
|
scale = .05; |
|
|
|
@ -35,7 +34,6 @@ connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVA |
|
|
|
|
|
|
|
|
|
layer->bias_updates = calloc(outputs, sizeof(float)); |
|
|
|
|
//layer->bias_adapt = calloc(outputs, sizeof(float));
|
|
|
|
|
layer->bias_momentum = calloc(outputs, sizeof(float)); |
|
|
|
|
layer->biases = calloc(outputs, sizeof(float)); |
|
|
|
|
for(i = 0; i < outputs; ++i){ |
|
|
|
|
//layer->biases[i] = rand_normal()*scale + scale;
|
|
|
|
@ -50,24 +48,19 @@ connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVA |
|
|
|
|
|
|
|
|
|
void update_connected_layer(connected_layer layer) |
|
|
|
|
{ |
|
|
|
|
int i; |
|
|
|
|
for(i = 0; i < layer.outputs; ++i){ |
|
|
|
|
layer.bias_momentum[i] = layer.learning_rate*(layer.bias_updates[i]) + layer.momentum*layer.bias_momentum[i]; |
|
|
|
|
layer.biases[i] += layer.bias_momentum[i]; |
|
|
|
|
} |
|
|
|
|
for(i = 0; i < layer.outputs*layer.inputs; ++i){ |
|
|
|
|
layer.weight_momentum[i] = layer.learning_rate*(layer.weight_updates[i] - layer.decay*layer.weights[i]) + layer.momentum*layer.weight_momentum[i]; |
|
|
|
|
layer.weights[i] += layer.weight_momentum[i]; |
|
|
|
|
} |
|
|
|
|
memset(layer.bias_updates, 0, layer.outputs*sizeof(float)); |
|
|
|
|
memset(layer.weight_updates, 0, layer.outputs*layer.inputs*sizeof(float)); |
|
|
|
|
axpy_cpu(layer.outputs, layer.learning_rate, layer.bias_updates, 1, layer.biases, 1); |
|
|
|
|
scal_cpu(layer.outputs, layer.momentum, layer.bias_updates, 1); |
|
|
|
|
|
|
|
|
|
scal_cpu(layer.inputs*layer.outputs, 1.-layer.learning_rate*layer.decay, layer.weights, 1); |
|
|
|
|
axpy_cpu(layer.inputs*layer.outputs, layer.learning_rate, layer.weight_updates, 1, layer.weights, 1); |
|
|
|
|
scal_cpu(layer.inputs*layer.outputs, layer.momentum, layer.weight_updates, 1); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void forward_connected_layer(connected_layer layer, float *input) |
|
|
|
|
{ |
|
|
|
|
int i; |
|
|
|
|
for(i = 0; i < layer.batch; ++i){ |
|
|
|
|
memcpy(layer.output+i*layer.outputs, layer.biases, layer.outputs*sizeof(float)); |
|
|
|
|
copy_cpu(layer.outputs, layer.biases, 1, layer.output + i*layer.outputs, 1); |
|
|
|
|
} |
|
|
|
|
int m = layer.batch; |
|
|
|
|
int k = layer.inputs; |
|
|
|
@ -82,8 +75,8 @@ void forward_connected_layer(connected_layer layer, float *input) |
|
|
|
|
void backward_connected_layer(connected_layer layer, float *input, float *delta) |
|
|
|
|
{ |
|
|
|
|
int i; |
|
|
|
|
gradient_array(layer.output, layer.outputs*layer.batch, layer.activation, layer.delta); |
|
|
|
|
for(i = 0; i < layer.outputs*layer.batch; ++i){ |
|
|
|
|
layer.delta[i] *= gradient(layer.output[i], layer.activation); |
|
|
|
|
layer.bias_updates[i%layer.outputs] += layer.delta[i]; |
|
|
|
|
} |
|
|
|
|
int m = layer.inputs; |
|
|
|
|