|
|
|
@ -135,26 +135,24 @@ void forward_convolutional_layer_gpu(convolutional_layer l, network_state state) |
|
|
|
|
// More: http://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#tensor_ops |
|
|
|
|
|
|
|
|
|
const size_t input16_size = l.batch*l.c*l.w*l.h; |
|
|
|
|
static size_t max_input16_size = input16_size; |
|
|
|
|
static half* input16 = cuda_make_f16_from_f32_array(NULL, max_input16_size); |
|
|
|
|
|
|
|
|
|
const size_t output16_size = l.batch*l.out_c*l.out_h*l.out_w; |
|
|
|
|
static size_t max_output16_size = output16_size; |
|
|
|
|
static half* output16 = cuda_make_f16_from_f32_array(NULL, max_output16_size); |
|
|
|
|
|
|
|
|
|
if (max_input16_size < input16_size) { |
|
|
|
|
max_input16_size = input16_size; |
|
|
|
|
cuda_free((float *)input16); |
|
|
|
|
input16 = cuda_make_f16_from_f32_array(state.input, max_input16_size); |
|
|
|
|
if (*state.net.max_input16_size < input16_size) { |
|
|
|
|
//printf("\n input16_size: cur = %zu \t max = %zu \n", input16_size, *state.net.max_input16_size); |
|
|
|
|
*state.net.max_input16_size = input16_size; |
|
|
|
|
if (*state.net.input16_gpu) cuda_free(*state.net.input16_gpu); |
|
|
|
|
*state.net.input16_gpu = (float *)cuda_make_f16_from_f32_array(NULL, *state.net.max_input16_size); |
|
|
|
|
} |
|
|
|
|
float *input16 = *state.net.input16_gpu; |
|
|
|
|
|
|
|
|
|
if (max_output16_size < output16_size) { |
|
|
|
|
max_output16_size = output16_size; |
|
|
|
|
cuda_free((float *)output16); |
|
|
|
|
output16 = cuda_make_f16_from_f32_array(NULL, max_output16_size); |
|
|
|
|
if (*state.net.max_output16_size < output16_size) { |
|
|
|
|
*state.net.max_output16_size = output16_size; |
|
|
|
|
if (*state.net.output16_gpu) cuda_free(*state.net.output16_gpu); |
|
|
|
|
*state.net.output16_gpu = (float *)cuda_make_f16_from_f32_array(NULL, *state.net.max_output16_size); |
|
|
|
|
} |
|
|
|
|
float *output16 = *state.net.output16_gpu; |
|
|
|
|
|
|
|
|
|
cuda_convert_f32_to_f16(state.input, input16_size, (float *)input16); |
|
|
|
|
cuda_convert_f32_to_f16(state.input, input16_size, input16); |
|
|
|
|
|
|
|
|
|
//fill_ongpu(output16_size / 2, 0, (float *)output16, 1); |
|
|
|
|
cudnnConvolutionForward(cudnn_handle(), |
|
|
|
@ -171,7 +169,7 @@ void forward_convolutional_layer_gpu(convolutional_layer l, network_state state) |
|
|
|
|
l.dstTensorDesc, |
|
|
|
|
output16); |
|
|
|
|
|
|
|
|
|
cuda_convert_f16_to_f32((float *)output16, output16_size, l.output_gpu); |
|
|
|
|
cuda_convert_f16_to_f32(output16, output16_size, l.output_gpu); |
|
|
|
|
|
|
|
|
|
#else |
|
|
|
|
|
|
|
|
@ -238,27 +236,24 @@ void backward_convolutional_layer_gpu(convolutional_layer l, network_state state |
|
|
|
|
#ifdef CUDNN_HALF |
|
|
|
|
|
|
|
|
|
const size_t input16_size = l.batch*l.c*l.w*l.h; |
|
|
|
|
static size_t max_input16_size = input16_size; |
|
|
|
|
static half* input16 = cuda_make_f16_from_f32_array(NULL, max_input16_size); |
|
|
|
|
|
|
|
|
|
const size_t delta16_size = l.batch*l.n*l.out_w*l.out_h; |
|
|
|
|
static size_t max_delta16_size = delta16_size; |
|
|
|
|
static half* delta16 = cuda_make_f16_from_f32_array(NULL, max_delta16_size); |
|
|
|
|
|
|
|
|
|
if (max_input16_size < input16_size) { |
|
|
|
|
max_input16_size = input16_size; |
|
|
|
|
cuda_free((float *)input16); |
|
|
|
|
input16 = cuda_make_f16_from_f32_array(state.input, max_input16_size); |
|
|
|
|
|
|
|
|
|
if (*state.net.max_input16_size < input16_size) { |
|
|
|
|
*state.net.max_input16_size = input16_size; |
|
|
|
|
if(*state.net.input16_gpu) cuda_free(*state.net.input16_gpu); |
|
|
|
|
*state.net.input16_gpu = (float *)cuda_make_f16_from_f32_array(NULL, *state.net.max_input16_size); |
|
|
|
|
} |
|
|
|
|
float *input16 = *state.net.input16_gpu; |
|
|
|
|
|
|
|
|
|
if (max_delta16_size < delta16_size) { |
|
|
|
|
max_delta16_size = delta16_size; |
|
|
|
|
cuda_free((float *)delta16); |
|
|
|
|
delta16 = cuda_make_f16_from_f32_array(NULL, max_delta16_size); |
|
|
|
|
if (*state.net.max_output16_size < delta16_size) { |
|
|
|
|
*state.net.max_output16_size = delta16_size; |
|
|
|
|
if(*state.net.output16_gpu) cuda_free(*state.net.output16_gpu); |
|
|
|
|
*state.net.output16_gpu = (float *)cuda_make_f16_from_f32_array(NULL, *state.net.max_output16_size); |
|
|
|
|
} |
|
|
|
|
float *delta16 = *state.net.output16_gpu; |
|
|
|
|
|
|
|
|
|
cuda_convert_f32_to_f16(state.input, input16_size, (float *)input16); |
|
|
|
|
cuda_convert_f32_to_f16(l.delta_gpu, delta16_size, (float *)delta16); |
|
|
|
|
cuda_convert_f32_to_f16(state.input, input16_size, input16); |
|
|
|
|
cuda_convert_f32_to_f16(l.delta_gpu, delta16_size, delta16); |
|
|
|
|
|
|
|
|
|
// convert input: state.input (x), l.delta_gpu (y) from fp32 to fp16 |
|
|
|
|
// get output: l.weight_updates_gpu (dw) and convert it to fp32 (ONLY if it is fp16) |
|
|
|
@ -305,7 +300,7 @@ void backward_convolutional_layer_gpu(convolutional_layer l, network_state state |
|
|
|
|
l.dsrcTensorDesc, |
|
|
|
|
input16); // state.delta); |
|
|
|
|
|
|
|
|
|
cuda_convert_f16_to_f32((float *)input16, input16_size, state.delta); |
|
|
|
|
cuda_convert_f16_to_f32(input16, input16_size, state.delta); |
|
|
|
|
|
|
|
|
|
if (l.binary || l.xnor) swap_binary(&l); |
|
|
|
|
if (l.xnor) gradient_array_ongpu(original_input, l.batch*l.c*l.h*l.w, HARDTAN, state.delta); |
|
|
|
|