diff --git a/src/convolutional_kernels.cu b/src/convolutional_kernels.cu index 9d88a88c..44b9a0f9 100644 --- a/src/convolutional_kernels.cu +++ b/src/convolutional_kernels.cu @@ -135,26 +135,24 @@ void forward_convolutional_layer_gpu(convolutional_layer l, network_state state) // More: http://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#tensor_ops const size_t input16_size = l.batch*l.c*l.w*l.h; - static size_t max_input16_size = input16_size; - static half* input16 = cuda_make_f16_from_f32_array(NULL, max_input16_size); - const size_t output16_size = l.batch*l.out_c*l.out_h*l.out_w; - static size_t max_output16_size = output16_size; - static half* output16 = cuda_make_f16_from_f32_array(NULL, max_output16_size); - if (max_input16_size < input16_size) { - max_input16_size = input16_size; - cuda_free((float *)input16); - input16 = cuda_make_f16_from_f32_array(state.input, max_input16_size); + if (*state.net.max_input16_size < input16_size) { + //printf("\n input16_size: cur = %zu \t max = %zu \n", input16_size, *state.net.max_input16_size); + *state.net.max_input16_size = input16_size; + if (*state.net.input16_gpu) cuda_free(*state.net.input16_gpu); + *state.net.input16_gpu = (float *)cuda_make_f16_from_f32_array(NULL, *state.net.max_input16_size); } + float *input16 = *state.net.input16_gpu; - if (max_output16_size < output16_size) { - max_output16_size = output16_size; - cuda_free((float *)output16); - output16 = cuda_make_f16_from_f32_array(NULL, max_output16_size); + if (*state.net.max_output16_size < output16_size) { + *state.net.max_output16_size = output16_size; + if (*state.net.output16_gpu) cuda_free(*state.net.output16_gpu); + *state.net.output16_gpu = (float *)cuda_make_f16_from_f32_array(NULL, *state.net.max_output16_size); } + float *output16 = *state.net.output16_gpu; - cuda_convert_f32_to_f16(state.input, input16_size, (float *)input16); + cuda_convert_f32_to_f16(state.input, input16_size, input16); //fill_ongpu(output16_size / 2, 0, (float *)output16, 1); cudnnConvolutionForward(cudnn_handle(), @@ -171,7 +169,7 @@ void forward_convolutional_layer_gpu(convolutional_layer l, network_state state) l.dstTensorDesc, output16); - cuda_convert_f16_to_f32((float *)output16, output16_size, l.output_gpu); + cuda_convert_f16_to_f32(output16, output16_size, l.output_gpu); #else @@ -238,27 +236,24 @@ void backward_convolutional_layer_gpu(convolutional_layer l, network_state state #ifdef CUDNN_HALF const size_t input16_size = l.batch*l.c*l.w*l.h; - static size_t max_input16_size = input16_size; - static half* input16 = cuda_make_f16_from_f32_array(NULL, max_input16_size); - const size_t delta16_size = l.batch*l.n*l.out_w*l.out_h; - static size_t max_delta16_size = delta16_size; - static half* delta16 = cuda_make_f16_from_f32_array(NULL, max_delta16_size); - - if (max_input16_size < input16_size) { - max_input16_size = input16_size; - cuda_free((float *)input16); - input16 = cuda_make_f16_from_f32_array(state.input, max_input16_size); + + if (*state.net.max_input16_size < input16_size) { + *state.net.max_input16_size = input16_size; + if(*state.net.input16_gpu) cuda_free(*state.net.input16_gpu); + *state.net.input16_gpu = (float *)cuda_make_f16_from_f32_array(NULL, *state.net.max_input16_size); } + float *input16 = *state.net.input16_gpu; - if (max_delta16_size < delta16_size) { - max_delta16_size = delta16_size; - cuda_free((float *)delta16); - delta16 = cuda_make_f16_from_f32_array(NULL, max_delta16_size); + if (*state.net.max_output16_size < delta16_size) { + *state.net.max_output16_size = delta16_size; + if(*state.net.output16_gpu) cuda_free(*state.net.output16_gpu); + *state.net.output16_gpu = (float *)cuda_make_f16_from_f32_array(NULL, *state.net.max_output16_size); } + float *delta16 = *state.net.output16_gpu; - cuda_convert_f32_to_f16(state.input, input16_size, (float *)input16); - cuda_convert_f32_to_f16(l.delta_gpu, delta16_size, (float *)delta16); + cuda_convert_f32_to_f16(state.input, input16_size, input16); + cuda_convert_f32_to_f16(l.delta_gpu, delta16_size, delta16); // convert input: state.input (x), l.delta_gpu (y) from fp32 to fp16 // get output: l.weight_updates_gpu (dw) and convert it to fp32 (ONLY if it is fp16) @@ -305,7 +300,7 @@ void backward_convolutional_layer_gpu(convolutional_layer l, network_state state l.dsrcTensorDesc, input16); // state.delta); - cuda_convert_f16_to_f32((float *)input16, input16_size, state.delta); + cuda_convert_f16_to_f32(input16, input16_size, state.delta); if (l.binary || l.xnor) swap_binary(&l); if (l.xnor) gradient_array_ongpu(original_input, l.batch*l.c*l.h*l.w, HARDTAN, state.delta); diff --git a/src/convolutional_layer.c b/src/convolutional_layer.c index 377b898e..7c0c00b5 100644 --- a/src/convolutional_layer.c +++ b/src/convolutional_layer.c @@ -305,8 +305,8 @@ convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int l.weights_gpu = cuda_make_array(l.weights, c*n*size*size); #ifdef CUDNN_HALF - l.weights_gpu16 = cuda_make_array(l.weights, c*n*size*size / 2); - l.weight_updates_gpu16 = cuda_make_array(l.weight_updates, c*n*size*size / 2); + l.weights_gpu16 = cuda_make_array(NULL, c*n*size*size / 2); //cuda_make_array(l.weights, c*n*size*size / 2); + l.weight_updates_gpu16 = cuda_make_array(NULL, c*n*size*size / 2); //cuda_make_array(l.weight_updates, c*n*size*size / 2); #endif l.weight_updates_gpu = cuda_make_array(l.weight_updates, c*n*size*size); diff --git a/src/network.c b/src/network.c index d23468de..964d3e8a 100644 --- a/src/network.c +++ b/src/network.c @@ -140,6 +140,11 @@ network make_network(int n) #ifdef GPU net.input_gpu = calloc(1, sizeof(float *)); net.truth_gpu = calloc(1, sizeof(float *)); + + net.input16_gpu = calloc(1, sizeof(float *)); + net.output16_gpu = calloc(1, sizeof(float *)); + net.max_input16_size = calloc(1, sizeof(size_t)); + net.max_output16_size = calloc(1, sizeof(size_t)); #endif return net; } @@ -622,6 +627,13 @@ void free_network(network net) if (*net.truth_gpu) cuda_free(*net.truth_gpu); if (net.input_gpu) free(net.input_gpu); if (net.truth_gpu) free(net.truth_gpu); + + if (*net.input16_gpu) cuda_free(*net.input16_gpu); + if (*net.output16_gpu) cuda_free(*net.output16_gpu); + if (net.input16_gpu) free(net.input16_gpu); + if (net.output16_gpu) free(net.output16_gpu); + if (net.max_input16_size) free(net.max_input16_size); + if (net.max_output16_size) free(net.max_output16_size); #else free(net.workspace); #endif diff --git a/src/network.h b/src/network.h index 6f4123ab..2d28e810 100644 --- a/src/network.h +++ b/src/network.h @@ -64,6 +64,10 @@ typedef struct network{ #ifdef GPU float **input_gpu; float **truth_gpu; + float **input16_gpu; + float **output16_gpu; + size_t *max_input16_size; + size_t *max_output16_size; int wait_stream; #endif } network; diff --git a/src/yolo_console_dll.cpp b/src/yolo_console_dll.cpp index f08d5316..4a8310aa 100644 --- a/src/yolo_console_dll.cpp +++ b/src/yolo_console_dll.cpp @@ -26,17 +26,19 @@ #include "opencv2/videoio/videoio.hpp" #define OPENCV_VERSION CVAUX_STR(CV_VERSION_MAJOR)""CVAUX_STR(CV_VERSION_MINOR)""CVAUX_STR(CV_VERSION_REVISION) #pragma comment(lib, "opencv_world" OPENCV_VERSION ".lib") +#ifdef TRACK_OPTFLOW #pragma comment(lib, "opencv_cudaoptflow" OPENCV_VERSION ".lib") #pragma comment(lib, "opencv_cudaimgproc" OPENCV_VERSION ".lib") #pragma comment(lib, "opencv_core" OPENCV_VERSION ".lib") #pragma comment(lib, "opencv_imgproc" OPENCV_VERSION ".lib") #pragma comment(lib, "opencv_highgui" OPENCV_VERSION ".lib") +#endif // TRACK_OPTFLOW #else #define OPENCV_VERSION CVAUX_STR(CV_VERSION_EPOCH)""CVAUX_STR(CV_VERSION_MAJOR)""CVAUX_STR(CV_VERSION_MINOR) #pragma comment(lib, "opencv_core" OPENCV_VERSION ".lib") #pragma comment(lib, "opencv_imgproc" OPENCV_VERSION ".lib") #pragma comment(lib, "opencv_highgui" OPENCV_VERSION ".lib") -#endif +#endif // CV_VERSION_EPOCH class track_kalman { public: