|
|
|
@ -18,256 +18,12 @@ |
|
|
|
|
#define _GNU_SOURCE |
|
|
|
|
#include <fenv.h> |
|
|
|
|
|
|
|
|
|
void test_convolve() |
|
|
|
|
{ |
|
|
|
|
image dog = load_image("dog.jpg",300,400); |
|
|
|
|
printf("dog channels %d\n", dog.c); |
|
|
|
|
image kernel = make_random_image(3,3,dog.c); |
|
|
|
|
image edge = make_image(dog.h, dog.w, 1); |
|
|
|
|
int i; |
|
|
|
|
clock_t start = clock(), end; |
|
|
|
|
for(i = 0; i < 1000; ++i){ |
|
|
|
|
convolve(dog, kernel, 1, 0, edge, 1); |
|
|
|
|
} |
|
|
|
|
end = clock(); |
|
|
|
|
printf("Convolutions: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC); |
|
|
|
|
show_image_layers(edge, "Test Convolve"); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#ifdef GPU |
|
|
|
|
|
|
|
|
|
void test_convolutional_layer() |
|
|
|
|
{ |
|
|
|
|
/*
|
|
|
|
|
int i; |
|
|
|
|
image dog = load_image("data/dog.jpg",224,224); |
|
|
|
|
network net = parse_network_cfg("cfg/convolutional.cfg"); |
|
|
|
|
// data test = load_cifar10_data("data/cifar10/test_batch.bin");
|
|
|
|
|
// float *X = calloc(net.batch*test.X.cols, sizeof(float));
|
|
|
|
|
// float *y = calloc(net.batch*test.y.cols, sizeof(float));
|
|
|
|
|
int in_size = get_network_input_size(net)*net.batch; |
|
|
|
|
int del_size = get_network_output_size_layer(net, 0)*net.batch; |
|
|
|
|
int size = get_network_output_size(net)*net.batch; |
|
|
|
|
float *X = calloc(in_size, sizeof(float)); |
|
|
|
|
float *y = calloc(size, sizeof(float)); |
|
|
|
|
for(i = 0; i < in_size; ++i){ |
|
|
|
|
X[i] = dog.data[i%get_network_input_size(net)]; |
|
|
|
|
} |
|
|
|
|
// get_batch(test, net.batch, X, y);
|
|
|
|
|
clock_t start, end; |
|
|
|
|
cl_mem input_cl = cl_make_array(X, in_size); |
|
|
|
|
cl_mem truth_cl = cl_make_array(y, size); |
|
|
|
|
|
|
|
|
|
forward_network_gpu(net, input_cl, truth_cl, 1); |
|
|
|
|
start = clock(); |
|
|
|
|
forward_network_gpu(net, input_cl, truth_cl, 1); |
|
|
|
|
end = clock(); |
|
|
|
|
float gpu_sec = (float)(end-start)/CLOCKS_PER_SEC; |
|
|
|
|
printf("forward gpu: %f sec\n", gpu_sec); |
|
|
|
|
start = clock(); |
|
|
|
|
backward_network_gpu(net, input_cl); |
|
|
|
|
end = clock(); |
|
|
|
|
gpu_sec = (float)(end-start)/CLOCKS_PER_SEC; |
|
|
|
|
printf("backward gpu: %f sec\n", gpu_sec); |
|
|
|
|
//float gpu_cost = get_network_cost(net);
|
|
|
|
|
float *gpu_out = calloc(size, sizeof(float)); |
|
|
|
|
memcpy(gpu_out, get_network_output(net), size*sizeof(float)); |
|
|
|
|
|
|
|
|
|
float *gpu_del = calloc(del_size, sizeof(float)); |
|
|
|
|
memcpy(gpu_del, get_network_delta_layer(net, 0), del_size*sizeof(float)); |
|
|
|
|
*/ |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
start = clock(); |
|
|
|
|
forward_network(net, X, y, 1); |
|
|
|
|
backward_network(net, X); |
|
|
|
|
float cpu_cost = get_network_cost(net); |
|
|
|
|
end = clock(); |
|
|
|
|
float cpu_sec = (float)(end-start)/CLOCKS_PER_SEC; |
|
|
|
|
float *cpu_out = calloc(size, sizeof(float)); |
|
|
|
|
memcpy(cpu_out, get_network_output(net), size*sizeof(float)); |
|
|
|
|
float *cpu_del = calloc(del_size, sizeof(float)); |
|
|
|
|
memcpy(cpu_del, get_network_delta_layer(net, 0), del_size*sizeof(float)); |
|
|
|
|
|
|
|
|
|
float sum = 0; |
|
|
|
|
float del_sum = 0; |
|
|
|
|
for(i = 0; i < size; ++i) sum += pow(gpu_out[i] - cpu_out[i], 2); |
|
|
|
|
for(i = 0; i < del_size; ++i) { |
|
|
|
|
//printf("%f %f\n", cpu_del[i], gpu_del[i]);
|
|
|
|
|
del_sum += pow(cpu_del[i] - gpu_del[i], 2); |
|
|
|
|
} |
|
|
|
|
printf("GPU cost: %f, CPU cost: %f\n", gpu_cost, cpu_cost); |
|
|
|
|
printf("gpu: %f sec, cpu: %f sec, diff: %f, delta diff: %f, size: %d\n", gpu_sec, cpu_sec, sum, del_sum, size); |
|
|
|
|
*/ |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
void test_col2im() |
|
|
|
|
{ |
|
|
|
|
float col[] = {1,2,1,2, |
|
|
|
|
1,2,1,2, |
|
|
|
|
1,2,1,2, |
|
|
|
|
1,2,1,2, |
|
|
|
|
1,2,1,2, |
|
|
|
|
1,2,1,2, |
|
|
|
|
1,2,1,2, |
|
|
|
|
1,2,1,2, |
|
|
|
|
1,2,1,2}; |
|
|
|
|
float im[16] = {0}; |
|
|
|
|
int batch = 1; |
|
|
|
|
int channels = 1; |
|
|
|
|
int height=4; |
|
|
|
|
int width=4; |
|
|
|
|
int ksize = 3; |
|
|
|
|
int stride = 1; |
|
|
|
|
int pad = 0; |
|
|
|
|
//col2im_gpu(col, batch,
|
|
|
|
|
// channels, height, width,
|
|
|
|
|
// ksize, stride, pad, im);
|
|
|
|
|
int i; |
|
|
|
|
for(i = 0; i < 16; ++i)printf("%f,", im[i]); |
|
|
|
|
printf("\n"); |
|
|
|
|
float data_im[] = { |
|
|
|
|
1,2,3,4, |
|
|
|
|
5,6,7,8, |
|
|
|
|
9,10,11,12 |
|
|
|
|
}; |
|
|
|
|
float data_col[18] = {0}; |
|
|
|
|
im2col_cpu(data_im, batch, |
|
|
|
|
channels, height, width, |
|
|
|
|
ksize, stride, pad, data_col) ; |
|
|
|
|
for(i = 0; i < 18; ++i)printf("%f,", data_col[i]); |
|
|
|
|
printf("\n"); |
|
|
|
|
} |
|
|
|
|
*/ |
|
|
|
|
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
void test_convolve_matrix() |
|
|
|
|
{ |
|
|
|
|
image dog = load_image("dog.jpg",300,400); |
|
|
|
|
printf("dog channels %d\n", dog.c); |
|
|
|
|
|
|
|
|
|
int size = 11; |
|
|
|
|
int stride = 4; |
|
|
|
|
int n = 40; |
|
|
|
|
float *filters = make_random_image(size, size, dog.c*n).data; |
|
|
|
|
|
|
|
|
|
int mw = ((dog.h-size)/stride+1)*((dog.w-size)/stride+1); |
|
|
|
|
int mh = (size*size*dog.c); |
|
|
|
|
float *matrix = calloc(mh*mw, sizeof(float)); |
|
|
|
|
|
|
|
|
|
image edge = make_image((dog.h-size)/stride+1, (dog.w-size)/stride+1, n); |
|
|
|
|
|
|
|
|
|
int i; |
|
|
|
|
clock_t start = clock(), end; |
|
|
|
|
for(i = 0; i < 1000; ++i){ |
|
|
|
|
//im2col_cpu(dog.data,1, dog.c, dog.h, dog.w, size, stride, 0, matrix);
|
|
|
|
|
gemm(0,0,n,mw,mh,1,filters,mh,matrix,mw,1,edge.data,mw); |
|
|
|
|
} |
|
|
|
|
end = clock(); |
|
|
|
|
printf("Convolutions: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC); |
|
|
|
|
show_image_layers(edge, "Test Convolve"); |
|
|
|
|
cvWaitKey(0); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void test_color() |
|
|
|
|
{ |
|
|
|
|
image dog = load_image("test_color.png", 300, 400); |
|
|
|
|
show_image_layers(dog, "Test Color"); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void verify_convolutional_layer() |
|
|
|
|
{ |
|
|
|
|
/*
|
|
|
|
|
srand(0); |
|
|
|
|
int i; |
|
|
|
|
int n = 1; |
|
|
|
|
int stride = 1; |
|
|
|
|
int size = 3; |
|
|
|
|
float eps = .00000001; |
|
|
|
|
image test = make_random_image(5,5, 1); |
|
|
|
|
convolutional_layer layer = *make_convolutional_layer(1,test.h,test.w,test.c, n, size, stride, 0, RELU,0,0,0); |
|
|
|
|
image out = get_convolutional_image(layer); |
|
|
|
|
float **jacobian = calloc(test.h*test.w*test.c, sizeof(float)); |
|
|
|
|
|
|
|
|
|
forward_convolutional_layer(layer, test.data); |
|
|
|
|
image base = copy_image(out); |
|
|
|
|
|
|
|
|
|
for(i = 0; i < test.h*test.w*test.c; ++i){ |
|
|
|
|
test.data[i] += eps; |
|
|
|
|
forward_convolutional_layer(layer, test.data); |
|
|
|
|
image partial = copy_image(out); |
|
|
|
|
subtract_image(partial, base); |
|
|
|
|
scale_image(partial, 1/eps); |
|
|
|
|
jacobian[i] = partial.data; |
|
|
|
|
test.data[i] -= eps; |
|
|
|
|
} |
|
|
|
|
float **jacobian2 = calloc(out.h*out.w*out.c, sizeof(float)); |
|
|
|
|
image in_delta = make_image(test.h, test.w, test.c); |
|
|
|
|
image out_delta = get_convolutional_delta(layer); |
|
|
|
|
for(i = 0; i < out.h*out.w*out.c; ++i){ |
|
|
|
|
out_delta.data[i] = 1; |
|
|
|
|
backward_convolutional_layer(layer, in_delta.data); |
|
|
|
|
image partial = copy_image(in_delta); |
|
|
|
|
jacobian2[i] = partial.data; |
|
|
|
|
out_delta.data[i] = 0; |
|
|
|
|
} |
|
|
|
|
int j; |
|
|
|
|
float *j1 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(float)); |
|
|
|
|
float *j2 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(float)); |
|
|
|
|
for(i = 0; i < test.h*test.w*test.c; ++i){ |
|
|
|
|
for(j =0 ; j < out.h*out.w*out.c; ++j){ |
|
|
|
|
j1[i*out.h*out.w*out.c + j] = jacobian[i][j]; |
|
|
|
|
j2[i*out.h*out.w*out.c + j] = jacobian2[j][i]; |
|
|
|
|
printf("%f %f\n", jacobian[i][j], jacobian2[j][i]); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
image mj1 = float_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j1); |
|
|
|
|
image mj2 = float_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j2); |
|
|
|
|
printf("%f %f\n", avg_image_layer(mj1,0), avg_image_layer(mj2,0)); |
|
|
|
|
show_image(mj1, "forward jacobian"); |
|
|
|
|
show_image(mj2, "backward jacobian"); |
|
|
|
|
*/ |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void test_load() |
|
|
|
|
{ |
|
|
|
|
image dog = load_image("dog.jpg", 300, 400); |
|
|
|
|
show_image(dog, "Test Load"); |
|
|
|
|
show_image_layers(dog, "Test Load"); |
|
|
|
|
} |
|
|
|
|
void test_upsample() |
|
|
|
|
{ |
|
|
|
|
image dog = load_image("dog.jpg", 300, 400); |
|
|
|
|
int n = 3; |
|
|
|
|
image up = make_image(n*dog.h, n*dog.w, dog.c); |
|
|
|
|
upsample_image(dog, n, up); |
|
|
|
|
show_image(up, "Test Upsample"); |
|
|
|
|
show_image_layers(up, "Test Upsample"); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void test_rotate() |
|
|
|
|
{ |
|
|
|
|
int i; |
|
|
|
|
image dog = load_image("dog.jpg",300,400); |
|
|
|
|
clock_t start = clock(), end; |
|
|
|
|
for(i = 0; i < 1001; ++i){ |
|
|
|
|
rotate_image(dog); |
|
|
|
|
} |
|
|
|
|
end = clock(); |
|
|
|
|
printf("Rotations: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC); |
|
|
|
|
show_image(dog, "Test Rotate"); |
|
|
|
|
|
|
|
|
|
image random = make_random_image(3,3,3); |
|
|
|
|
show_image(random, "Test Rotate Random"); |
|
|
|
|
rotate_image(random); |
|
|
|
|
show_image(random, "Test Rotate Random"); |
|
|
|
|
rotate_image(random); |
|
|
|
|
show_image(random, "Test Rotate Random"); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void test_parser() |
|
|
|
|
{ |
|
|
|
@ -275,47 +31,11 @@ void test_parser() |
|
|
|
|
save_network(net, "cfg/trained_imagenet_smaller.cfg"); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void train_asirra() |
|
|
|
|
{ |
|
|
|
|
network net = parse_network_cfg("cfg/imagenet.cfg"); |
|
|
|
|
int imgs = 1000/net.batch+1; |
|
|
|
|
//imgs = 1;
|
|
|
|
|
srand(2222222); |
|
|
|
|
int i = 0; |
|
|
|
|
char *labels[] = {"cat","dog"}; |
|
|
|
|
|
|
|
|
|
list *plist = get_paths("data/assira/train.list"); |
|
|
|
|
char **paths = (char **)list_to_array(plist); |
|
|
|
|
int m = plist->size; |
|
|
|
|
free_list(plist); |
|
|
|
|
|
|
|
|
|
clock_t time; |
|
|
|
|
|
|
|
|
|
while(1){ |
|
|
|
|
i += 1; |
|
|
|
|
time=clock(); |
|
|
|
|
data train = load_data(paths, imgs*net.batch, m, labels, 2, 256, 256); |
|
|
|
|
normalize_data_rows(train); |
|
|
|
|
printf("Loaded: %lf seconds\n", sec(clock()-time)); |
|
|
|
|
time=clock(); |
|
|
|
|
//float loss = train_network_data(net, train, imgs);
|
|
|
|
|
float loss = 0; |
|
|
|
|
printf("%d: %f, Time: %lf seconds\n", i*net.batch*imgs, loss, sec(clock()-time)); |
|
|
|
|
free_data(train); |
|
|
|
|
if(i%10==0){ |
|
|
|
|
char buff[256]; |
|
|
|
|
sprintf(buff, "cfg/asirra_backup_%d.cfg", i); |
|
|
|
|
save_network(net, buff); |
|
|
|
|
} |
|
|
|
|
//lr *= .99;
|
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void draw_detection(image im, float *box, int side) |
|
|
|
|
{ |
|
|
|
|
int j; |
|
|
|
|
int r, c; |
|
|
|
|
float amount[5]; |
|
|
|
|
float amount[5] = {0,0,0,0,0}; |
|
|
|
|
for(r = 0; r < side*side; ++r){ |
|
|
|
|
for(j = 0; j < 5; ++j){ |
|
|
|
|
if(box[r*5] > amount[j]) { |
|
|
|
@ -355,7 +75,7 @@ void train_detection_net() |
|
|
|
|
//network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg");
|
|
|
|
|
network net = parse_network_cfg("cfg/detnet.cfg"); |
|
|
|
|
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
|
|
|
|
int imgs = 1000/net.batch+1; |
|
|
|
|
int imgs = 1024; |
|
|
|
|
srand(time(0)); |
|
|
|
|
//srand(23410);
|
|
|
|
|
int i = 0; |
|
|
|
@ -366,7 +86,7 @@ void train_detection_net() |
|
|
|
|
while(1){ |
|
|
|
|
i += 1; |
|
|
|
|
time=clock(); |
|
|
|
|
data train = load_data_detection_jitter_random(imgs*net.batch, paths, plist->size, 256, 256, 7, 7, 256); |
|
|
|
|
data train = load_data_detection_jitter_random(imgs, paths, plist->size, 256, 256, 7, 7, 256); |
|
|
|
|
/*
|
|
|
|
|
image im = float_to_image(224, 224, 3, train.X.vals[0]); |
|
|
|
|
draw_detection(im, train.y.vals[0], 7); |
|
|
|
@ -375,11 +95,9 @@ void train_detection_net() |
|
|
|
|
normalize_data_rows(train); |
|
|
|
|
printf("Loaded: %lf seconds\n", sec(clock()-time)); |
|
|
|
|
time=clock(); |
|
|
|
|
#ifdef GPU |
|
|
|
|
float loss = train_network_data_gpu(net, train, imgs); |
|
|
|
|
float loss = train_network(net, train); |
|
|
|
|
avg_loss = avg_loss*.9 + loss*.1; |
|
|
|
|
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs*net.batch); |
|
|
|
|
#endif |
|
|
|
|
if(i%10==0){ |
|
|
|
|
char buff[256]; |
|
|
|
|
sprintf(buff, "/home/pjreddie/imagenet_backup/detnet_%d.cfg", i); |
|
|
|
@ -396,7 +114,7 @@ void train_imagenet_distributed(char *address) |
|
|
|
|
network net = parse_network_cfg("cfg/net.cfg"); |
|
|
|
|
set_learning_network(&net, 0, 1, 0); |
|
|
|
|
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
|
|
|
|
int imgs = 1; |
|
|
|
|
int imgs = net.batch; |
|
|
|
|
int i = 0; |
|
|
|
|
char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list"); |
|
|
|
|
list *plist = get_paths("/data/imagenet/cls.train.list"); |
|
|
|
@ -404,7 +122,7 @@ void train_imagenet_distributed(char *address) |
|
|
|
|
printf("%d\n", plist->size); |
|
|
|
|
clock_t time; |
|
|
|
|
data train, buffer; |
|
|
|
|
pthread_t load_thread = load_data_thread(paths, imgs*net.batch, plist->size, labels, 1000, 224, 224, &buffer); |
|
|
|
|
pthread_t load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 224, 224, &buffer); |
|
|
|
|
while(1){ |
|
|
|
|
i += 1; |
|
|
|
|
|
|
|
|
@ -416,15 +134,13 @@ void train_imagenet_distributed(char *address) |
|
|
|
|
pthread_join(load_thread, 0); |
|
|
|
|
train = buffer; |
|
|
|
|
normalize_data_rows(train); |
|
|
|
|
load_thread = load_data_thread(paths, imgs*net.batch, plist->size, labels, 1000, 224, 224, &buffer); |
|
|
|
|
load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 224, 224, &buffer); |
|
|
|
|
printf("Loaded: %lf seconds\n", sec(clock()-time)); |
|
|
|
|
time=clock(); |
|
|
|
|
|
|
|
|
|
#ifdef GPU |
|
|
|
|
float loss = train_network_data_gpu(net, train, imgs); |
|
|
|
|
float loss = train_network(net, train); |
|
|
|
|
avg_loss = avg_loss*.9 + loss*.1; |
|
|
|
|
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs*net.batch); |
|
|
|
|
#endif |
|
|
|
|
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs); |
|
|
|
|
free_data(train); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
@ -437,7 +153,7 @@ void train_imagenet(char *cfgfile) |
|
|
|
|
network net = parse_network_cfg(cfgfile); |
|
|
|
|
set_learning_network(&net, .000001, .9, .0005); |
|
|
|
|
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
|
|
|
|
int imgs = 1000/net.batch+1; |
|
|
|
|
int imgs = 1024; |
|
|
|
|
int i = 20590; |
|
|
|
|
char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list"); |
|
|
|
|
list *plist = get_paths("/data/imagenet/cls.train.list"); |
|
|
|
@ -447,21 +163,19 @@ void train_imagenet(char *cfgfile) |
|
|
|
|
pthread_t load_thread; |
|
|
|
|
data train; |
|
|
|
|
data buffer; |
|
|
|
|
load_thread = load_data_thread(paths, imgs*net.batch, plist->size, labels, 1000, 256, 256, &buffer); |
|
|
|
|
load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 256, 256, &buffer); |
|
|
|
|
while(1){ |
|
|
|
|
i += 1; |
|
|
|
|
time=clock(); |
|
|
|
|
pthread_join(load_thread, 0); |
|
|
|
|
train = buffer; |
|
|
|
|
normalize_data_rows(train); |
|
|
|
|
load_thread = load_data_thread(paths, imgs*net.batch, plist->size, labels, 1000, 256, 256, &buffer); |
|
|
|
|
load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 256, 256, &buffer); |
|
|
|
|
printf("Loaded: %lf seconds\n", sec(clock()-time)); |
|
|
|
|
time=clock(); |
|
|
|
|
#ifdef GPU |
|
|
|
|
float loss = train_network_data_gpu(net, train, imgs); |
|
|
|
|
float loss = train_network(net, train); |
|
|
|
|
avg_loss = avg_loss*.9 + loss*.1; |
|
|
|
|
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs*net.batch); |
|
|
|
|
#endif |
|
|
|
|
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs); |
|
|
|
|
free_data(train); |
|
|
|
|
if(i%10==0){ |
|
|
|
|
char buff[256]; |
|
|
|
@ -505,12 +219,10 @@ void validate_imagenet(char *filename) |
|
|
|
|
printf("Loaded: %d images in %lf seconds\n", val.X.rows, sec(clock()-time)); |
|
|
|
|
|
|
|
|
|
time=clock(); |
|
|
|
|
#ifdef GPU |
|
|
|
|
float *acc = network_accuracies_gpu(net, val); |
|
|
|
|
float *acc = network_accuracies(net, val); |
|
|
|
|
avg_acc += acc[0]; |
|
|
|
|
avg_top5 += acc[1]; |
|
|
|
|
printf("%d: top1: %f, top5: %f, %lf seconds, %d images\n", i, avg_acc/i, avg_top5/i, sec(clock()-time), val.X.rows); |
|
|
|
|
#endif |
|
|
|
|
free_data(val); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
@ -620,60 +332,27 @@ void test_cifar10() |
|
|
|
|
void train_cifar10() |
|
|
|
|
{ |
|
|
|
|
srand(555555); |
|
|
|
|
network net = parse_network_cfg("cfg/cifar_ramp.part"); |
|
|
|
|
network net = parse_network_cfg("cfg/cifar10.cfg"); |
|
|
|
|
data test = load_cifar10_data("data/cifar10/test_batch.bin"); |
|
|
|
|
int count = 0; |
|
|
|
|
int iters = 10000/net.batch; |
|
|
|
|
data train = load_all_cifar10(); |
|
|
|
|
while(++count <= 10000){ |
|
|
|
|
clock_t start = clock(), end; |
|
|
|
|
float loss = train_network_sgd_gpu(net, train, iters); |
|
|
|
|
end = clock(); |
|
|
|
|
//visualize_network(net);
|
|
|
|
|
//cvWaitKey(5000);
|
|
|
|
|
clock_t time = clock(); |
|
|
|
|
float loss = train_network_sgd(net, train, iters); |
|
|
|
|
|
|
|
|
|
//float test_acc = network_accuracy(net, test);
|
|
|
|
|
//printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
|
|
|
|
|
if(count%10 == 0){ |
|
|
|
|
float test_acc = network_accuracy_gpu(net, test); |
|
|
|
|
printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay); |
|
|
|
|
float test_acc = network_accuracy(net, test); |
|
|
|
|
printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds\n", count, loss, test_acc,sec(clock()-time)); |
|
|
|
|
char buff[256]; |
|
|
|
|
sprintf(buff, "/home/pjreddie/cifar/cifar10_%d.cfg", count); |
|
|
|
|
sprintf(buff, "unikitty/cifar10_%d.cfg", count); |
|
|
|
|
save_network(net, buff); |
|
|
|
|
}else{ |
|
|
|
|
printf("%d: Loss: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, (float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay); |
|
|
|
|
printf("%d: Loss: %f, Time: %lf seconds\n", count, loss, sec(clock()-time)); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
free_data(train); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void test_vince() |
|
|
|
|
{ |
|
|
|
|
network net = parse_network_cfg("cfg/vince.cfg"); |
|
|
|
|
data train = load_categorical_data_csv("images/vince.txt", 144, 2); |
|
|
|
|
normalize_data_rows(train); |
|
|
|
|
|
|
|
|
|
int count = 0; |
|
|
|
|
//float lr = .00005;
|
|
|
|
|
//float momentum = .9;
|
|
|
|
|
//float decay = 0.0001;
|
|
|
|
|
//decay = 0;
|
|
|
|
|
int batch = 10000; |
|
|
|
|
while(++count <= 10000){ |
|
|
|
|
float loss = train_network_sgd(net, train, batch); |
|
|
|
|
printf("%5f %5f\n",(double)count*batch/train.X.rows, loss); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void test_nist_single() |
|
|
|
|
{ |
|
|
|
|
srand(222222); |
|
|
|
|
network net = parse_network_cfg("cfg/nist_single.cfg"); |
|
|
|
|
data train = load_categorical_data_csv("data/mnist/mnist_tiny.csv", 0, 10); |
|
|
|
|
normalize_data_rows(train); |
|
|
|
|
float loss = train_network_sgd(net, train, 1); |
|
|
|
|
printf("Loss: %f, LR: %f, Momentum: %f, Decay: %f\n", loss, net.learning_rate, net.momentum, net.decay); |
|
|
|
|
|
|
|
|
|
free_data(train); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void test_nist(char *path) |
|
|
|
@ -683,7 +362,7 @@ void test_nist(char *path) |
|
|
|
|
data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10); |
|
|
|
|
normalize_data_rows(test); |
|
|
|
|
clock_t start = clock(), end; |
|
|
|
|
float test_acc = network_accuracy_gpu(net, test); |
|
|
|
|
float test_acc = network_accuracy(net, test); |
|
|
|
|
end = clock(); |
|
|
|
|
printf("Accuracy: %f, Time: %lf seconds\n", test_acc,(float)(end-start)/CLOCKS_PER_SEC); |
|
|
|
|
} |
|
|
|
@ -698,13 +377,12 @@ void train_nist() |
|
|
|
|
normalize_data_rows(test); |
|
|
|
|
int count = 0; |
|
|
|
|
int iters = 60000/net.batch + 1; |
|
|
|
|
//iters = 6000/net.batch + 1;
|
|
|
|
|
while(++count <= 2000){ |
|
|
|
|
clock_t start = clock(), end; |
|
|
|
|
float loss = train_network_sgd_gpu(net, train, iters); |
|
|
|
|
float loss = train_network_sgd(net, train, iters); |
|
|
|
|
end = clock(); |
|
|
|
|
float test_acc = 0; |
|
|
|
|
if(count%1 == 0) test_acc = network_accuracy_gpu(net, test); |
|
|
|
|
if(count%1 == 0) test_acc = network_accuracy(net, test); |
|
|
|
|
printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
@ -722,7 +400,7 @@ void train_nist_distributed(char *address) |
|
|
|
|
iters = 1000/net.batch + 1; |
|
|
|
|
while(++count <= 2000){ |
|
|
|
|
clock_t start = clock(), end; |
|
|
|
|
float loss = train_network_sgd_gpu(net, train, iters); |
|
|
|
|
float loss = train_network_sgd(net, train, iters); |
|
|
|
|
client_update(net, address); |
|
|
|
|
end = clock(); |
|
|
|
|
//float test_acc = network_accuracy_gpu(net, test);
|
|
|
|
@ -768,87 +446,6 @@ void test_ensemble() |
|
|
|
|
printf("Full Ensemble Accuracy: %lf\n", acc); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void test_random_classify() |
|
|
|
|
{ |
|
|
|
|
network net = parse_network_cfg("connected.cfg"); |
|
|
|
|
matrix m = csv_to_matrix("train.csv"); |
|
|
|
|
//matrix ho = hold_out_matrix(&m, 2500);
|
|
|
|
|
float *truth = pop_column(&m, 0); |
|
|
|
|
//float *ho_truth = pop_column(&ho, 0);
|
|
|
|
|
int i; |
|
|
|
|
clock_t start = clock(), end; |
|
|
|
|
int count = 0; |
|
|
|
|
while(++count <= 300){ |
|
|
|
|
for(i = 0; i < m.rows; ++i){ |
|
|
|
|
int index = rand()%m.rows; |
|
|
|
|
//image p = float_to_image(1690,1,1,m.vals[index]);
|
|
|
|
|
//normalize_image(p);
|
|
|
|
|
forward_network(net, m.vals[index], 0, 1); |
|
|
|
|
float *out = get_network_output(net); |
|
|
|
|
float *delta = get_network_delta(net); |
|
|
|
|
//printf("%f\n", out[0]);
|
|
|
|
|
delta[0] = truth[index] - out[0]; |
|
|
|
|
// printf("%f\n", delta[0]);
|
|
|
|
|
//printf("%f %f\n", truth[index], out[0]);
|
|
|
|
|
//backward_network(net, m.vals[index], );
|
|
|
|
|
update_network(net); |
|
|
|
|
} |
|
|
|
|
//float test_acc = error_network(net, m, truth);
|
|
|
|
|
//float valid_acc = error_network(net, ho, ho_truth);
|
|
|
|
|
//printf("%f, %f\n", test_acc, valid_acc);
|
|
|
|
|
//fprintf(stderr, "%5d: %f Valid: %f\n",count, test_acc, valid_acc);
|
|
|
|
|
//if(valid_acc > .70) break;
|
|
|
|
|
} |
|
|
|
|
end = clock(); |
|
|
|
|
FILE *fp = fopen("submission/out.txt", "w"); |
|
|
|
|
matrix test = csv_to_matrix("test.csv"); |
|
|
|
|
truth = pop_column(&test, 0); |
|
|
|
|
for(i = 0; i < test.rows; ++i){ |
|
|
|
|
forward_network(net, test.vals[i],0, 0); |
|
|
|
|
float *out = get_network_output(net); |
|
|
|
|
if(fabs(out[0]) < .5) fprintf(fp, "0\n"); |
|
|
|
|
else fprintf(fp, "1\n"); |
|
|
|
|
} |
|
|
|
|
fclose(fp); |
|
|
|
|
printf("Neural Net Learning: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void test_split() |
|
|
|
|
{ |
|
|
|
|
data train = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10); |
|
|
|
|
data *split = split_data(train, 0, 13); |
|
|
|
|
printf("%d, %d, %d\n", train.X.rows, split[0].X.rows, split[1].X.rows); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
void test_im2row() |
|
|
|
|
{ |
|
|
|
|
int h = 20; |
|
|
|
|
int w = 20; |
|
|
|
|
int c = 3; |
|
|
|
|
int stride = 1; |
|
|
|
|
int size = 11; |
|
|
|
|
image test = make_random_image(h,w,c); |
|
|
|
|
int mc = 1; |
|
|
|
|
int mw = ((h-size)/stride+1)*((w-size)/stride+1); |
|
|
|
|
int mh = (size*size*c); |
|
|
|
|
int msize = mc*mw*mh; |
|
|
|
|
float *matrix = calloc(msize, sizeof(float)); |
|
|
|
|
int i; |
|
|
|
|
for(i = 0; i < 1000; ++i){ |
|
|
|
|
//im2col_cpu(test.data,1, c, h, w, size, stride, 0, matrix);
|
|
|
|
|
//image render = float_to_image(mh, mw, mc, matrix);
|
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
*/ |
|
|
|
|
|
|
|
|
|
void flip_network() |
|
|
|
|
{ |
|
|
|
|
network net = parse_network_cfg("cfg/voc_imagenet_orig.cfg"); |
|
|
|
|
save_network(net, "cfg/voc_imagenet_rev.cfg"); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void visualize_cat() |
|
|
|
|
{ |
|
|
|
|
network net = parse_network_cfg("cfg/voc_imagenet.cfg"); |
|
|
|
@ -861,7 +458,6 @@ void visualize_cat() |
|
|
|
|
cvWaitKey(0); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void test_gpu_net() |
|
|
|
|
{ |
|
|
|
|
srand(222222); |
|
|
|
@ -872,6 +468,7 @@ void test_gpu_net() |
|
|
|
|
translate_data_rows(test, -144); |
|
|
|
|
int count = 0; |
|
|
|
|
int iters = 1000/net.batch; |
|
|
|
|
|
|
|
|
|
while(++count <= 5){ |
|
|
|
|
clock_t start = clock(), end; |
|
|
|
|
float loss = train_network_sgd(net, train, iters); |
|
|
|
@ -879,18 +476,18 @@ void test_gpu_net() |
|
|
|
|
float test_acc = network_accuracy(net, test); |
|
|
|
|
printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay); |
|
|
|
|
} |
|
|
|
|
#ifdef GPU |
|
|
|
|
|
|
|
|
|
gpu_index = -1; |
|
|
|
|
count = 0; |
|
|
|
|
srand(222222); |
|
|
|
|
net = parse_network_cfg("cfg/nist.cfg"); |
|
|
|
|
while(++count <= 5){ |
|
|
|
|
clock_t start = clock(), end; |
|
|
|
|
float loss = train_network_sgd_gpu(net, train, iters); |
|
|
|
|
float loss = train_network_sgd(net, train, iters); |
|
|
|
|
end = clock(); |
|
|
|
|
float test_acc = network_accuracy(net, test); |
|
|
|
|
printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay); |
|
|
|
|
} |
|
|
|
|
#endif |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void test_correct_alexnet() |
|
|
|
@ -902,36 +499,34 @@ void test_correct_alexnet() |
|
|
|
|
clock_t time; |
|
|
|
|
int count = 0; |
|
|
|
|
network net; |
|
|
|
|
int imgs = 1000/net.batch+1; |
|
|
|
|
imgs = 1; |
|
|
|
|
#ifdef GPU |
|
|
|
|
int imgs = net.batch; |
|
|
|
|
|
|
|
|
|
count = 0; |
|
|
|
|
srand(222222); |
|
|
|
|
net = parse_network_cfg("cfg/net.cfg"); |
|
|
|
|
while(++count <= 5){ |
|
|
|
|
time=clock(); |
|
|
|
|
data train = load_data(paths, imgs*net.batch, plist->size, labels, 1000, 256, 256); |
|
|
|
|
//translate_data_rows(train, -144);
|
|
|
|
|
data train = load_data(paths, imgs, plist->size, labels, 1000, 256, 256); |
|
|
|
|
normalize_data_rows(train); |
|
|
|
|
printf("Loaded: %lf seconds\n", sec(clock()-time)); |
|
|
|
|
time=clock(); |
|
|
|
|
float loss = train_network_data_gpu(net, train, imgs); |
|
|
|
|
float loss = train_network(net, train); |
|
|
|
|
printf("%d: %f, %lf seconds, %d images\n", count, loss, sec(clock()-time), imgs*net.batch); |
|
|
|
|
free_data(train); |
|
|
|
|
} |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
gpu_index = -1; |
|
|
|
|
count = 0; |
|
|
|
|
srand(222222); |
|
|
|
|
net = parse_network_cfg("cfg/net.cfg"); |
|
|
|
|
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
|
|
|
|
while(++count <= 5){ |
|
|
|
|
time=clock(); |
|
|
|
|
data train = load_data(paths, imgs*net.batch, plist->size, labels, 1000, 256,256); |
|
|
|
|
//translate_data_rows(train, -144);
|
|
|
|
|
data train = load_data(paths, imgs, plist->size, labels, 1000, 256,256); |
|
|
|
|
normalize_data_rows(train); |
|
|
|
|
printf("Loaded: %lf seconds\n", sec(clock()-time)); |
|
|
|
|
time=clock(); |
|
|
|
|
float loss = train_network_data_cpu(net, train, imgs); |
|
|
|
|
float loss = train_network(net, train); |
|
|
|
|
printf("%d: %f, %lf seconds, %d images\n", count, loss, sec(clock()-time), imgs*net.batch); |
|
|
|
|
free_data(train); |
|
|
|
|
} |
|
|
|
@ -944,6 +539,7 @@ void run_server() |
|
|
|
|
set_batch_network(&net, 1); |
|
|
|
|
server_update(net); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void test_client() |
|
|
|
|
{ |
|
|
|
|
network net = parse_network_cfg("cfg/alexnet.client"); |
|
|
|
@ -957,33 +553,64 @@ void test_client() |
|
|
|
|
printf("Transfered: %lf seconds\n", sec(clock()-time)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
int find_int_arg(int argc, char* argv[], char *arg) |
|
|
|
|
void del_arg(int argc, char **argv, int index) |
|
|
|
|
{ |
|
|
|
|
int i; |
|
|
|
|
for(i = index; i < argc-1; ++i) argv[i] = argv[i+1]; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
int find_arg(int argc, char* argv[], char *arg) |
|
|
|
|
{ |
|
|
|
|
int i; |
|
|
|
|
for(i = 0; i < argc-1; ++i) if(0==strcmp(argv[i], arg)) return atoi(argv[i+1]); |
|
|
|
|
for(i = 0; i < argc-1; ++i) if(0==strcmp(argv[i], arg)) { |
|
|
|
|
del_arg(argc, argv, i); |
|
|
|
|
return 1; |
|
|
|
|
} |
|
|
|
|
return 0; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
int main(int argc, char *argv[]) |
|
|
|
|
int find_int_arg(int argc, char **argv, char *arg, int def) |
|
|
|
|
{ |
|
|
|
|
int i; |
|
|
|
|
for(i = 0; i < argc-1; ++i){ |
|
|
|
|
if(0==strcmp(argv[i], arg)){ |
|
|
|
|
def = atoi(argv[i+1]); |
|
|
|
|
del_arg(argc, argv, i); |
|
|
|
|
del_arg(argc, argv, i); |
|
|
|
|
break; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
return def; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
int main(int argc, char **argv) |
|
|
|
|
{ |
|
|
|
|
if(argc < 2){ |
|
|
|
|
fprintf(stderr, "usage: %s <function>\n", argv[0]); |
|
|
|
|
return 0; |
|
|
|
|
} |
|
|
|
|
int index = find_int_arg(argc, argv, "-i"); |
|
|
|
|
#ifdef GPU |
|
|
|
|
cl_setup(index); |
|
|
|
|
gpu_index = find_int_arg(argc, argv, "-i", 0); |
|
|
|
|
if(find_arg(argc, argv, "-nogpu")) gpu_index = -1; |
|
|
|
|
|
|
|
|
|
#ifndef GPU |
|
|
|
|
gpu_index = -1; |
|
|
|
|
#else |
|
|
|
|
if(gpu_index >= 0){ |
|
|
|
|
cl_setup(); |
|
|
|
|
} |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
if(0==strcmp(argv[1], "detection")) train_detection_net(); |
|
|
|
|
else if(0==strcmp(argv[1], "asirra")) train_asirra(); |
|
|
|
|
else if(0==strcmp(argv[1], "nist")) train_nist(); |
|
|
|
|
else if(0==strcmp(argv[1], "cifar")) train_cifar10(); |
|
|
|
|
else if(0==strcmp(argv[1], "test_correct")) test_correct_alexnet(); |
|
|
|
|
else if(0==strcmp(argv[1], "test")) test_imagenet(); |
|
|
|
|
else if(0==strcmp(argv[1], "server")) run_server(); |
|
|
|
|
|
|
|
|
|
#ifdef GPU |
|
|
|
|
else if(0==strcmp(argv[1], "test_gpu")) test_gpu_blas(); |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
else if(argc < 3){ |
|
|
|
|
fprintf(stderr, "usage: %s <function> <filename>\n", argv[0]); |
|
|
|
|
return 0; |
|
|
|
@ -999,227 +626,3 @@ int main(int argc, char *argv[]) |
|
|
|
|
return 0; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
void visualize_imagenet_topk(char *filename) |
|
|
|
|
{ |
|
|
|
|
int i,j,k,l; |
|
|
|
|
int topk = 10; |
|
|
|
|
network net = parse_network_cfg("cfg/voc_imagenet.cfg"); |
|
|
|
|
list *plist = get_paths(filename); |
|
|
|
|
node *n = plist->front; |
|
|
|
|
int h = voc_size(1), w = voc_size(1); |
|
|
|
|
int num = get_network_image(net).c; |
|
|
|
|
image **vizs = calloc(num, sizeof(image*)); |
|
|
|
|
float **score = calloc(num, sizeof(float *)); |
|
|
|
|
for(i = 0; i < num; ++i){ |
|
|
|
|
vizs[i] = calloc(topk, sizeof(image)); |
|
|
|
|
for(j = 0; j < topk; ++j) vizs[i][j] = make_image(h,w,3); |
|
|
|
|
score[i] = calloc(topk, sizeof(float)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
int count = 0; |
|
|
|
|
while(n){ |
|
|
|
|
++count; |
|
|
|
|
char *image_path = (char *)n->val; |
|
|
|
|
image im = load_image(image_path, 0, 0); |
|
|
|
|
n = n->next; |
|
|
|
|
if(im.h < 200 || im.w < 200) continue; |
|
|
|
|
printf("Processing %dx%d image\n", im.h, im.w); |
|
|
|
|
resize_network(net, im.h, im.w, im.c); |
|
|
|
|
//scale_image(im, 1./255);
|
|
|
|
|
translate_image(im, -144); |
|
|
|
|
forward_network(net, im.data, 0, 0); |
|
|
|
|
image out = get_network_image(net); |
|
|
|
|
|
|
|
|
|
int dh = (im.h - h)/(out.h-1); |
|
|
|
|
int dw = (im.w - w)/(out.w-1); |
|
|
|
|
//printf("%d %d\n", dh, dw);
|
|
|
|
|
for(k = 0; k < out.c; ++k){ |
|
|
|
|
float topv = 0; |
|
|
|
|
int topi = -1; |
|
|
|
|
int topj = -1; |
|
|
|
|
for(i = 0; i < out.h; ++i){ |
|
|
|
|
for(j = 0; j < out.w; ++j){ |
|
|
|
|
float val = get_pixel(out, i, j, k); |
|
|
|
|
if(val > topv){ |
|
|
|
|
topv = val; |
|
|
|
|
topi = i; |
|
|
|
|
topj = j; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
if(topv){ |
|
|
|
|
image sub = get_sub_image(im, dh*topi, dw*topj, h, w); |
|
|
|
|
for(l = 0; l < topk; ++l){ |
|
|
|
|
if(topv > score[k][l]){ |
|
|
|
|
float swap = score[k][l]; |
|
|
|
|
score[k][l] = topv; |
|
|
|
|
topv = swap; |
|
|
|
|
|
|
|
|
|
image swapi = vizs[k][l]; |
|
|
|
|
vizs[k][l] = sub; |
|
|
|
|
sub = swapi; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
free_image(sub); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
free_image(im); |
|
|
|
|
if(count%50 == 0){ |
|
|
|
|
image grid = grid_images(vizs, num, topk); |
|
|
|
|
//show_image(grid, "IMAGENET Visualization");
|
|
|
|
|
save_image(grid, "IMAGENET Grid Single Nonorm"); |
|
|
|
|
free_image(grid); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
//cvWaitKey(0);
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void visualize_imagenet_features(char *filename) |
|
|
|
|
{ |
|
|
|
|
int i,j,k; |
|
|
|
|
network net = parse_network_cfg("cfg/voc_imagenet.cfg"); |
|
|
|
|
list *plist = get_paths(filename); |
|
|
|
|
node *n = plist->front; |
|
|
|
|
int h = voc_size(1), w = voc_size(1); |
|
|
|
|
int num = get_network_image(net).c; |
|
|
|
|
image *vizs = calloc(num, sizeof(image)); |
|
|
|
|
for(i = 0; i < num; ++i) vizs[i] = make_image(h, w, 3); |
|
|
|
|
while(n){ |
|
|
|
|
char *image_path = (char *)n->val; |
|
|
|
|
image im = load_image(image_path, 0, 0); |
|
|
|
|
printf("Processing %dx%d image\n", im.h, im.w); |
|
|
|
|
resize_network(net, im.h, im.w, im.c); |
|
|
|
|
forward_network(net, im.data, 0, 0); |
|
|
|
|
image out = get_network_image(net); |
|
|
|
|
|
|
|
|
|
int dh = (im.h - h)/h; |
|
|
|
|
int dw = (im.w - w)/w; |
|
|
|
|
for(i = 0; i < out.h; ++i){ |
|
|
|
|
for(j = 0; j < out.w; ++j){ |
|
|
|
|
image sub = get_sub_image(im, dh*i, dw*j, h, w); |
|
|
|
|
for(k = 0; k < out.c; ++k){ |
|
|
|
|
float val = get_pixel(out, i, j, k); |
|
|
|
|
//printf("%f, ", val);
|
|
|
|
|
image sub_c = copy_image(sub); |
|
|
|
|
scale_image(sub_c, val); |
|
|
|
|
add_into_image(sub_c, vizs[k], 0, 0); |
|
|
|
|
free_image(sub_c); |
|
|
|
|
} |
|
|
|
|
free_image(sub); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
//printf("\n");
|
|
|
|
|
show_images(vizs, 10, "IMAGENET Visualization"); |
|
|
|
|
cvWaitKey(1000); |
|
|
|
|
n = n->next; |
|
|
|
|
} |
|
|
|
|
cvWaitKey(0); |
|
|
|
|
} |
|
|
|
|
void features_VOC_image(char *image_file, char *image_dir, char *out_dir, int flip, int interval) |
|
|
|
|
{ |
|
|
|
|
int i,j; |
|
|
|
|
network net = parse_network_cfg("cfg/voc_imagenet.cfg"); |
|
|
|
|
char image_path[1024]; |
|
|
|
|
sprintf(image_path, "%s/%s",image_dir, image_file); |
|
|
|
|
char out_path[1024]; |
|
|
|
|
if (flip)sprintf(out_path, "%s%d/%s_r.txt",out_dir, interval, image_file); |
|
|
|
|
else sprintf(out_path, "%s%d/%s.txt",out_dir, interval, image_file); |
|
|
|
|
printf("%s\n", image_file); |
|
|
|
|
|
|
|
|
|
IplImage* src = 0; |
|
|
|
|
if( (src = cvLoadImage(image_path,-1)) == 0 ) file_error(image_path); |
|
|
|
|
if(flip)cvFlip(src, 0, 1); |
|
|
|
|
int w = src->width; |
|
|
|
|
int h = src->height; |
|
|
|
|
int sbin = 8; |
|
|
|
|
double scale = pow(2., 1./interval); |
|
|
|
|
int m = (w<h)?w:h; |
|
|
|
|
int max_scale = 1+floor((double)log((double)m/(5.*sbin))/log(scale)); |
|
|
|
|
if(max_scale < interval) error("max_scale must be >= interval"); |
|
|
|
|
image *ims = calloc(max_scale+interval, sizeof(image)); |
|
|
|
|
|
|
|
|
|
for(i = 0; i < interval; ++i){ |
|
|
|
|
double factor = 1./pow(scale, i); |
|
|
|
|
double ih = round(h*factor); |
|
|
|
|
double iw = round(w*factor); |
|
|
|
|
int ex_h = round(ih/4.) - 2; |
|
|
|
|
int ex_w = round(iw/4.) - 2; |
|
|
|
|
ims[i] = features_output_size(net, src, ex_h, ex_w); |
|
|
|
|
|
|
|
|
|
ih = round(h*factor); |
|
|
|
|
iw = round(w*factor); |
|
|
|
|
ex_h = round(ih/8.) - 2; |
|
|
|
|
ex_w = round(iw/8.) - 2; |
|
|
|
|
ims[i+interval] = features_output_size(net, src, ex_h, ex_w); |
|
|
|
|
for(j = i+interval; j < max_scale; j += interval){ |
|
|
|
|
factor /= 2.; |
|
|
|
|
ih = round(h*factor); |
|
|
|
|
iw = round(w*factor); |
|
|
|
|
ex_h = round(ih/8.) - 2; |
|
|
|
|
ex_w = round(iw/8.) - 2; |
|
|
|
|
ims[j+interval] = features_output_size(net, src, ex_h, ex_w); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
FILE *fp = fopen(out_path, "w"); |
|
|
|
|
if(fp == 0) file_error(out_path); |
|
|
|
|
for(i = 0; i < max_scale+interval; ++i){ |
|
|
|
|
image out = ims[i]; |
|
|
|
|
fprintf(fp, "%d, %d, %d\n",out.c, out.h, out.w); |
|
|
|
|
for(j = 0; j < out.c*out.h*out.w; ++j){ |
|
|
|
|
if(j != 0)fprintf(fp, ","); |
|
|
|
|
float o = out.data[j]; |
|
|
|
|
if(o < 0) o = 0; |
|
|
|
|
fprintf(fp, "%g", o); |
|
|
|
|
} |
|
|
|
|
fprintf(fp, "\n"); |
|
|
|
|
free_image(out); |
|
|
|
|
} |
|
|
|
|
free(ims); |
|
|
|
|
fclose(fp); |
|
|
|
|
cvReleaseImage(&src); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void test_distribution() |
|
|
|
|
{ |
|
|
|
|
IplImage* img = 0; |
|
|
|
|
if( (img = cvLoadImage("im_small.jpg",-1)) == 0 ) file_error("im_small.jpg"); |
|
|
|
|
network net = parse_network_cfg("cfg/voc_features.cfg"); |
|
|
|
|
int h = img->height/8-2; |
|
|
|
|
int w = img->width/8-2; |
|
|
|
|
image out = features_output_size(net, img, h, w); |
|
|
|
|
int c = out.c; |
|
|
|
|
out.c = 1; |
|
|
|
|
show_image(out, "output"); |
|
|
|
|
out.c = c; |
|
|
|
|
image input = ipl_to_image(img); |
|
|
|
|
show_image(input, "input"); |
|
|
|
|
CvScalar s; |
|
|
|
|
int i,j; |
|
|
|
|
image affects = make_image(input.h, input.w, 1); |
|
|
|
|
int count = 0; |
|
|
|
|
for(i = 0; i<img->height; i += 1){ |
|
|
|
|
for(j = 0; j < img->width; j += 1){ |
|
|
|
|
IplImage *copy = cvCloneImage(img); |
|
|
|
|
s=cvGet2D(copy,i,j); // get the (i,j) pixel value
|
|
|
|
|
printf("%d/%d\n", count++, img->height*img->width); |
|
|
|
|
s.val[0]=0; |
|
|
|
|
s.val[1]=0; |
|
|
|
|
s.val[2]=0; |
|
|
|
|
cvSet2D(copy,i,j,s); // set the (i,j) pixel value
|
|
|
|
|
image mod = features_output_size(net, copy, h, w); |
|
|
|
|
image dist = image_distance(out, mod); |
|
|
|
|
show_image(affects, "affects"); |
|
|
|
|
cvWaitKey(1); |
|
|
|
|
cvReleaseImage(©); |
|
|
|
|
//affects.data[i*affects.w + j] += dist.data[3*dist.w+5];
|
|
|
|
|
affects.data[i*affects.w + j] += dist.data[1*dist.w+1]; |
|
|
|
|
free_image(mod); |
|
|
|
|
free_image(dist); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
show_image(affects, "Origins"); |
|
|
|
|
cvWaitKey(0); |
|
|
|
|
cvWaitKey(0); |
|
|
|
|
} |
|
|
|
|
*/ |
|
|
|
|