### (neural network for object detection) - Tensor Cores can be used on [Linux](https://github.com/AlexeyAB/darknet#how-to-compile-on-linux) and [Windows](https://github.com/AlexeyAB/darknet#how-to-compile-on-windows-using-vcpkg)
* [Requirements (and how to install dependecies)](#requirements)
@ -73,9 +74,10 @@ You can get cfg-files by path: `darknet/cfg/`
#### Yolo v3 in other frameworks
* Convert `yolov3.weights`/`cfg` model to **TensorFlow**: by using [mystic123](https://github.com/mystic123/tensorflow-yolo-v3) or [jinyu121](https://github.com/jinyu121/DW2TF) projects, and [TensorFlow-lite](https://www.tensorflow.org/lite/guide/get_started#2_convert_the_model_format)
* To use Yolo v3 model in **Intel OpenVINO** (Myriad X / USB Neural Compute Stick / Arria FPGA): read this [manual](https://software.intel.com/en-us/articles/OpenVINO-Using-TensorFlow#converting-a-darknet-yolo-model)
* **TensorFlow:** convert `yolov3.weights`/`cfg` files to `yolov3.ckpt`/`pb/meta`: by using [mystic123](https://github.com/mystic123/tensorflow-yolo-v3) or [jinyu121](https://github.com/jinyu121/DW2TF) projects, and [TensorFlow-lite](https://www.tensorflow.org/lite/guide/get_started#2_convert_the_model_format)
* **Intel OpenVINO:** (Myriad X / USB Neural Compute Stick / Arria FPGA): read this [manual](https://software.intel.com/en-us/articles/OpenVINO-Using-TensorFlow#converting-a-darknet-yolo-model)
* **OpenCV-dnn** is very fast DNN implementation on CPU (x86/ARM-Android), use `yolov3.weights`/`cfg` with: [C++ example](https://github.com/opencv/opencv/blob/8c25a8eb7b10fb50cda323ee6bec68aa1a9ce43c/samples/dnn/object_detection.cpp#L192-L221), [Python example](https://github.com/opencv/opencv/blob/8c25a8eb7b10fb50cda323ee6bec68aa1a9ce43c/samples/dnn/object_detection.py#L129-L150)
* **PyTorch > ONNX > CoreML > iOS** how to convert cfg/weights-files to pt-file: [ultralytics/yolov3](https://github.com/ultralytics/yolov3#darknet-conversion)
##### Examples of results
@ -164,6 +166,8 @@ Before make, you can set such options in the `Makefile`: [link](https://github.c
* `OPENMP=1` to build with OpenMP support to accelerate Yolo by using multi-core CPU
* `LIBSO=1` to build a library `darknet.so` and binary runable file `uselib` that uses this library. Or you can try to run so `LD_LIBRARY_PATH=./:$LD_LIBRARY_PATH ./uselib test.mp4` How to use this SO-library from your own code - you can look at C++ example: https://github.com/AlexeyAB/darknet/blob/master/src/yolo_console_dll.cpp
or use in such a way: `LD_LIBRARY_PATH=./:$LD_LIBRARY_PATH ./uselib data/coco.names cfg/yolov3.cfg yolov3.weights test.mp4`
* `ZED_CAMERA=1` to build a library with ZED-3D-camera support (should be ZED SDK installed), then run
To run Darknet on Linux use examples from this article, just use `./darknet` instead of `darknet.exe`, i.e. use this command: `./darknet detector test ./cfg/coco.data ./cfg/yolov3.cfg ./yolov3.weights`