|
|
|
@ -109,18 +109,40 @@ float delta_yolo_box(box truth, float *x, float *biases, int n, int index, int i |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void delta_yolo_class(float *output, float *delta, int index, int class, int classes, int stride, float *avg_cat) |
|
|
|
|
void delta_yolo_class(float *output, float *delta, int index, int class_id, int classes, int stride, float *avg_cat, int focal_loss) |
|
|
|
|
{ |
|
|
|
|
int n; |
|
|
|
|
if (delta[index]){ |
|
|
|
|
delta[index + stride*class] = 1 - output[index + stride*class]; |
|
|
|
|
if(avg_cat) *avg_cat += output[index + stride*class]; |
|
|
|
|
delta[index + stride*class_id] = 1 - output[index + stride*class_id]; |
|
|
|
|
if(avg_cat) *avg_cat += output[index + stride*class_id]; |
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
for(n = 0; n < classes; ++n){ |
|
|
|
|
delta[index + stride*n] = ((n == class)?1 : 0) - output[index + stride*n]; |
|
|
|
|
if(n == class && avg_cat) *avg_cat += output[index + stride*n]; |
|
|
|
|
} |
|
|
|
|
// Focal loss
|
|
|
|
|
if (focal_loss) { |
|
|
|
|
// Focal Loss
|
|
|
|
|
float alpha = 0.5; // 0.25 or 0.5
|
|
|
|
|
//float gamma = 2; // hardcoded in many places of the grad-formula
|
|
|
|
|
|
|
|
|
|
int ti = index + stride*class_id; |
|
|
|
|
float pt = output[ti] + 0.000000000000001F; |
|
|
|
|
//float grad = -(1 - pt) * (2 * pt*logf(pt) + pt - 1); // http://blog.csdn.net/linmingan/article/details/77885832
|
|
|
|
|
float grad = (1 - pt) * (2 * pt*logf(pt) + pt - 1); // https://github.com/unsky/focal-loss
|
|
|
|
|
|
|
|
|
|
for (n = 0; n < classes; ++n) { |
|
|
|
|
delta[index + stride*n] = (((n == class_id) ? 1 : 0) - output[index + stride*n]); |
|
|
|
|
|
|
|
|
|
delta[index + stride*n] *= alpha*grad; |
|
|
|
|
|
|
|
|
|
if (n == class_id) *avg_cat += output[index + stride*n]; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
else { |
|
|
|
|
// default
|
|
|
|
|
for (n = 0; n < classes; ++n) { |
|
|
|
|
delta[index + stride*n] = ((n == class_id) ? 1 : 0) - output[index + stride*n]; |
|
|
|
|
if (n == class_id && avg_cat) *avg_cat += output[index + stride*n]; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
static int entry_index(layer l, int batch, int location, int entry) |
|
|
|
@ -196,7 +218,7 @@ void forward_yolo_layer(const layer l, network_state state) |
|
|
|
|
int class = state.truth[best_t*(4 + 1) + b*l.truths + 4]; |
|
|
|
|
if (l.map) class = l.map[class]; |
|
|
|
|
int class_index = entry_index(l, b, n*l.w*l.h + j*l.w + i, 4 + 1); |
|
|
|
|
delta_yolo_class(l.output, l.delta, class_index, class, l.classes, l.w*l.h, 0); |
|
|
|
|
delta_yolo_class(l.output, l.delta, class_index, class, l.classes, l.w*l.h, 0, l.focal_loss); |
|
|
|
|
box truth = float_to_box_stride(state.truth + best_t*(4 + 1) + b*l.truths, 1); |
|
|
|
|
delta_yolo_box(truth, l.output, l.biases, l.mask[n], box_index, i, j, l.w, l.h, state.net.w, state.net.h, l.delta, (2-truth.w*truth.h), l.w*l.h); |
|
|
|
|
} |
|
|
|
@ -236,7 +258,7 @@ void forward_yolo_layer(const layer l, network_state state) |
|
|
|
|
int class = state.truth[t*(4 + 1) + b*l.truths + 4]; |
|
|
|
|
if (l.map) class = l.map[class]; |
|
|
|
|
int class_index = entry_index(l, b, mask_n*l.w*l.h + j*l.w + i, 4 + 1); |
|
|
|
|
delta_yolo_class(l.output, l.delta, class_index, class, l.classes, l.w*l.h, &avg_cat); |
|
|
|
|
delta_yolo_class(l.output, l.delta, class_index, class, l.classes, l.w*l.h, &avg_cat, l.focal_loss); |
|
|
|
|
|
|
|
|
|
++count; |
|
|
|
|
++class_count; |
|
|
|
|