|
|
|
@ -8,7 +8,7 @@ extern "C" { |
|
|
|
|
#include "cuda.h" |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
__global__ void bias(int n, int size, float *biases, float *output) |
|
|
|
|
__global__ void bias_output_kernel(float *output, float *biases, int n, int size) |
|
|
|
|
{ |
|
|
|
|
int offset = blockIdx.x * blockDim.x + threadIdx.x; |
|
|
|
|
int filter = blockIdx.y; |
|
|
|
@ -17,18 +17,16 @@ __global__ void bias(int n, int size, float *biases, float *output) |
|
|
|
|
if(offset < size) output[(batch*n+filter)*size + offset] = biases[filter]; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
extern "C" void bias_output_gpu(const convolutional_layer layer) |
|
|
|
|
extern "C" void bias_output_gpu(float *output, float *biases, int batch, int n, int size) |
|
|
|
|
{ |
|
|
|
|
int size = convolutional_out_height(layer)*convolutional_out_width(layer); |
|
|
|
|
|
|
|
|
|
dim3 dimBlock(BLOCK, 1, 1); |
|
|
|
|
dim3 dimGrid((size-1)/BLOCK + 1, layer.n, layer.batch); |
|
|
|
|
dim3 dimGrid((size-1)/BLOCK + 1, n, batch); |
|
|
|
|
|
|
|
|
|
bias<<<dimGrid, dimBlock>>>(layer.n, size, layer.biases_gpu, layer.output_gpu); |
|
|
|
|
bias_output_kernel<<<dimGrid, dimBlock>>>(output, biases, n, size); |
|
|
|
|
check_error(cudaPeekAtLastError()); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
__global__ void learn_bias(int batch, int n, int size, float *delta, float *bias_updates, float scale) |
|
|
|
|
__global__ void backward_bias_kernel(float *bias_updates, float *delta, int batch, int n, int size, float scale) |
|
|
|
|
{ |
|
|
|
|
__shared__ float part[BLOCK]; |
|
|
|
|
int i,b; |
|
|
|
@ -48,36 +46,14 @@ __global__ void learn_bias(int batch, int n, int size, float *delta, float *bias |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
extern "C" void learn_bias_convolutional_layer_ongpu(convolutional_layer layer) |
|
|
|
|
extern "C" void backward_bias_gpu(float *bias_updates, float *delta, int batch, int n, int size) |
|
|
|
|
{ |
|
|
|
|
int size = convolutional_out_height(layer)*convolutional_out_width(layer); |
|
|
|
|
float alpha = 1./layer.batch; |
|
|
|
|
float alpha = 1./batch; |
|
|
|
|
|
|
|
|
|
learn_bias<<<layer.n, BLOCK>>>(layer.batch, layer.n, size, layer.delta_gpu, layer.bias_updates_gpu, alpha); |
|
|
|
|
backward_bias_kernel<<<n, BLOCK>>>(bias_updates, delta, batch, n, size, alpha); |
|
|
|
|
check_error(cudaPeekAtLastError()); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
extern "C" void test_learn_bias(convolutional_layer l) |
|
|
|
|
{ |
|
|
|
|
int i; |
|
|
|
|
int size = convolutional_out_height(l) * convolutional_out_width(l); |
|
|
|
|
for(i = 0; i < size*l.batch*l.n; ++i){ |
|
|
|
|
l.delta[i] = rand_uniform(); |
|
|
|
|
} |
|
|
|
|
for(i = 0; i < l.n; ++i){ |
|
|
|
|
l.bias_updates[i] = rand_uniform(); |
|
|
|
|
} |
|
|
|
|
cuda_push_array(l.delta_gpu, l.delta, size*l.batch*l.n); |
|
|
|
|
cuda_push_array(l.bias_updates_gpu, l.bias_updates, l.n); |
|
|
|
|
float *gpu = (float *) calloc(l.n, sizeof(float)); |
|
|
|
|
cuda_pull_array(l.bias_updates_gpu, gpu, l.n); |
|
|
|
|
for(i = 0; i < l.n; ++i) printf("%.9g %.9g\n", l.bias_updates[i], gpu[i]); |
|
|
|
|
learn_bias_convolutional_layer_ongpu(l); |
|
|
|
|
learn_bias_convolutional_layer(l); |
|
|
|
|
cuda_pull_array(l.bias_updates_gpu, gpu, l.n); |
|
|
|
|
for(i = 0; i < l.n; ++i) printf("%.9g %.9g\n", l.bias_updates[i], gpu[i]); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
extern "C" void forward_convolutional_layer_gpu(convolutional_layer layer, float *in) |
|
|
|
|
{ |
|
|
|
|
int i; |
|
|
|
@ -86,7 +62,7 @@ extern "C" void forward_convolutional_layer_gpu(convolutional_layer layer, float |
|
|
|
|
int n = convolutional_out_height(layer)* |
|
|
|
|
convolutional_out_width(layer); |
|
|
|
|
|
|
|
|
|
bias_output_gpu(layer); |
|
|
|
|
bias_output_gpu(layer.output_gpu, layer.biases_gpu, layer.batch, layer.n, n); |
|
|
|
|
|
|
|
|
|
for(i = 0; i < layer.batch; ++i){ |
|
|
|
|
im2col_ongpu(in, i*layer.c*layer.h*layer.w, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, layer.col_image_gpu); |
|
|
|
@ -106,8 +82,9 @@ extern "C" void backward_convolutional_layer_gpu(convolutional_layer layer, floa |
|
|
|
|
int n = layer.size*layer.size*layer.c; |
|
|
|
|
int k = convolutional_out_height(layer)* |
|
|
|
|
convolutional_out_width(layer); |
|
|
|
|
|
|
|
|
|
gradient_array_ongpu(layer.output_gpu, m*k*layer.batch, layer.activation, layer.delta_gpu); |
|
|
|
|
learn_bias_convolutional_layer_ongpu(layer); |
|
|
|
|
backward_bias_gpu(layer.bias_updates_gpu, layer.delta_gpu, layer.batch, layer.n, k); |
|
|
|
|
|
|
|
|
|
if(delta_gpu) scal_ongpu(layer.batch*layer.h*layer.w*layer.c, 0, delta_gpu, 1); |
|
|
|
|
|
|
|
|
|