|
|
|
@ -10,8 +10,9 @@ |
|
|
|
|
#ifdef OPENCV |
|
|
|
|
#include "opencv2/highgui/highgui_c.h" |
|
|
|
|
#endif |
|
|
|
|
static int coco_ids[] = {1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90}; |
|
|
|
|
|
|
|
|
|
void train_detector(char *datacfg, char *cfgfile, char *weightfile, int clear) |
|
|
|
|
void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear) |
|
|
|
|
{ |
|
|
|
|
list *options = read_data_cfg(datacfg); |
|
|
|
|
char *train_images = option_find_str(options, "train", "data/train.list"); |
|
|
|
@ -21,14 +22,28 @@ void train_detector(char *datacfg, char *cfgfile, char *weightfile, int clear) |
|
|
|
|
char *base = basecfg(cfgfile); |
|
|
|
|
printf("%s\n", base); |
|
|
|
|
float avg_loss = -1; |
|
|
|
|
network net = parse_network_cfg(cfgfile); |
|
|
|
|
network *nets = calloc(ngpus, sizeof(network)); |
|
|
|
|
|
|
|
|
|
srand(time(0)); |
|
|
|
|
int seed = rand(); |
|
|
|
|
int i; |
|
|
|
|
for(i = 0; i < ngpus; ++i){ |
|
|
|
|
srand(seed); |
|
|
|
|
#ifdef GPU |
|
|
|
|
cuda_set_device(gpus[i]); |
|
|
|
|
#endif |
|
|
|
|
nets[i] = parse_network_cfg(cfgfile); |
|
|
|
|
if(weightfile){ |
|
|
|
|
load_weights(&net, weightfile); |
|
|
|
|
load_weights(&nets[i], weightfile); |
|
|
|
|
} |
|
|
|
|
if(clear) *nets[i].seen = 0; |
|
|
|
|
nets[i].learning_rate *= ngpus; |
|
|
|
|
} |
|
|
|
|
if(clear) *net.seen = 0; |
|
|
|
|
srand(time(0)); |
|
|
|
|
network net = nets[0]; |
|
|
|
|
|
|
|
|
|
int imgs = net.batch * net.subdivisions * ngpus; |
|
|
|
|
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
|
|
|
|
int imgs = net.batch*net.subdivisions; |
|
|
|
|
int i = *net.seen/imgs; |
|
|
|
|
data train, buffer; |
|
|
|
|
|
|
|
|
|
layer l = net.layers[net.n - 1]; |
|
|
|
@ -62,13 +77,12 @@ void train_detector(char *datacfg, char *cfgfile, char *weightfile, int clear) |
|
|
|
|
clock_t time; |
|
|
|
|
//while(i*imgs < N*120){
|
|
|
|
|
while(get_current_batch(net) < net.max_batches){ |
|
|
|
|
i += 1; |
|
|
|
|
time=clock(); |
|
|
|
|
pthread_join(load_thread, 0); |
|
|
|
|
train = buffer; |
|
|
|
|
load_thread = load_data(args); |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
/*
|
|
|
|
|
int k; |
|
|
|
|
for(k = 0; k < l.max_boxes; ++k){ |
|
|
|
|
box b = float_to_box(train.y.vals[10] + 1 + k*5); |
|
|
|
@ -83,16 +97,26 @@ void train_detector(char *datacfg, char *cfgfile, char *weightfile, int clear) |
|
|
|
|
draw_bbox(im, b, 8, 1,0,0); |
|
|
|
|
} |
|
|
|
|
save_image(im, "truth11"); |
|
|
|
|
*/ |
|
|
|
|
*/ |
|
|
|
|
|
|
|
|
|
printf("Loaded: %lf seconds\n", sec(clock()-time)); |
|
|
|
|
|
|
|
|
|
time=clock(); |
|
|
|
|
float loss = train_network(net, train); |
|
|
|
|
float loss = 0; |
|
|
|
|
#ifdef GPU |
|
|
|
|
if(ngpus == 1){ |
|
|
|
|
loss = train_network(net, train); |
|
|
|
|
} else { |
|
|
|
|
loss = train_networks(nets, ngpus, train, 4); |
|
|
|
|
} |
|
|
|
|
#else |
|
|
|
|
loss = train_network(net, train); |
|
|
|
|
#endif |
|
|
|
|
if (avg_loss < 0) avg_loss = loss; |
|
|
|
|
avg_loss = avg_loss*.9 + loss*.1; |
|
|
|
|
|
|
|
|
|
printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs); |
|
|
|
|
i = get_current_batch(net); |
|
|
|
|
printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs); |
|
|
|
|
if(i%1000==0 || (i < 1000 && i%100 == 0)){ |
|
|
|
|
char buff[256]; |
|
|
|
|
sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); |
|
|
|
@ -105,6 +129,39 @@ void train_detector(char *datacfg, char *cfgfile, char *weightfile, int clear) |
|
|
|
|
save_weights(net, buff); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static int get_coco_image_id(char *filename) |
|
|
|
|
{ |
|
|
|
|
char *p = strrchr(filename, '_'); |
|
|
|
|
return atoi(p+1); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
static void print_cocos(FILE *fp, char *image_path, box *boxes, float **probs, int num_boxes, int classes, int w, int h) |
|
|
|
|
{ |
|
|
|
|
int i, j; |
|
|
|
|
int image_id = get_coco_image_id(image_path); |
|
|
|
|
for(i = 0; i < num_boxes; ++i){ |
|
|
|
|
float xmin = boxes[i].x - boxes[i].w/2.; |
|
|
|
|
float xmax = boxes[i].x + boxes[i].w/2.; |
|
|
|
|
float ymin = boxes[i].y - boxes[i].h/2.; |
|
|
|
|
float ymax = boxes[i].y + boxes[i].h/2.; |
|
|
|
|
|
|
|
|
|
if (xmin < 0) xmin = 0; |
|
|
|
|
if (ymin < 0) ymin = 0; |
|
|
|
|
if (xmax > w) xmax = w; |
|
|
|
|
if (ymax > h) ymax = h; |
|
|
|
|
|
|
|
|
|
float bx = xmin; |
|
|
|
|
float by = ymin; |
|
|
|
|
float bw = xmax - xmin; |
|
|
|
|
float bh = ymax - ymin; |
|
|
|
|
|
|
|
|
|
for(j = 0; j < classes; ++j){ |
|
|
|
|
if (probs[i][j]) fprintf(fp, "{\"image_id\":%d, \"category_id\":%d, \"bbox\":[%f, %f, %f, %f], \"score\":%f},\n", image_id, coco_ids[j], bx, by, bw, bh, probs[i][j]); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void print_detector_detections(FILE **fps, char *id, box *boxes, float **probs, int total, int classes, int w, int h) |
|
|
|
|
{ |
|
|
|
|
int i, j; |
|
|
|
@ -131,8 +188,19 @@ void validate_detector(char *datacfg, char *cfgfile, char *weightfile) |
|
|
|
|
list *options = read_data_cfg(datacfg); |
|
|
|
|
char *valid_images = option_find_str(options, "valid", "data/train.list"); |
|
|
|
|
char *name_list = option_find_str(options, "names", "data/names.list"); |
|
|
|
|
char *prefix = option_find_str(options, "results", "results"); |
|
|
|
|
char **names = get_labels(name_list); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
char buff[1024]; |
|
|
|
|
int coco = option_find_int_quiet(options, "coco", 0); |
|
|
|
|
FILE *coco_fp = 0; |
|
|
|
|
if(coco){ |
|
|
|
|
snprintf(buff, 1024, "%s/coco_results.json", prefix); |
|
|
|
|
coco_fp = fopen(buff, "w"); |
|
|
|
|
fprintf(coco_fp, "[\n"); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
network net = parse_network_cfg(cfgfile); |
|
|
|
|
if(weightfile){ |
|
|
|
|
load_weights(&net, weightfile); |
|
|
|
@ -141,7 +209,7 @@ void validate_detector(char *datacfg, char *cfgfile, char *weightfile) |
|
|
|
|
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
|
|
|
|
srand(time(0)); |
|
|
|
|
|
|
|
|
|
char *base = "results/comp4_det_test_"; |
|
|
|
|
char *base = "comp4_det_test_"; |
|
|
|
|
list *plist = get_paths(valid_images); |
|
|
|
|
char **paths = (char **)list_to_array(plist); |
|
|
|
|
|
|
|
|
@ -151,8 +219,7 @@ void validate_detector(char *datacfg, char *cfgfile, char *weightfile) |
|
|
|
|
int j; |
|
|
|
|
FILE **fps = calloc(classes, sizeof(FILE *)); |
|
|
|
|
for(j = 0; j < classes; ++j){ |
|
|
|
|
char buff[1024]; |
|
|
|
|
snprintf(buff, 1024, "%s%s.txt", base, names[j]); |
|
|
|
|
snprintf(buff, 1024, "%s/%s%s.txt", prefix, base, names[j]); |
|
|
|
|
fps[j] = fopen(buff, "w"); |
|
|
|
|
} |
|
|
|
|
box *boxes = calloc(l.w*l.h*l.n, sizeof(box)); |
|
|
|
@ -207,7 +274,11 @@ void validate_detector(char *datacfg, char *cfgfile, char *weightfile) |
|
|
|
|
int h = val[t].h; |
|
|
|
|
get_region_boxes(l, w, h, thresh, probs, boxes, 0); |
|
|
|
|
if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, classes, nms); |
|
|
|
|
if(coco_fp){ |
|
|
|
|
print_cocos(coco_fp, path, boxes, probs, l.w*l.h*l.n, classes, w, h); |
|
|
|
|
}else{ |
|
|
|
|
print_detector_detections(fps, id, boxes, probs, l.w*l.h*l.n, classes, w, h); |
|
|
|
|
} |
|
|
|
|
free(id); |
|
|
|
|
free_image(val[t]); |
|
|
|
|
free_image(val_resized[t]); |
|
|
|
@ -216,6 +287,11 @@ void validate_detector(char *datacfg, char *cfgfile, char *weightfile) |
|
|
|
|
for(j = 0; j < classes; ++j){ |
|
|
|
|
fclose(fps[j]); |
|
|
|
|
} |
|
|
|
|
if(coco_fp){ |
|
|
|
|
fseek(coco_fp, -2, SEEK_CUR);
|
|
|
|
|
fprintf(coco_fp, "\n]\n"); |
|
|
|
|
fclose(coco_fp); |
|
|
|
|
} |
|
|
|
|
fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -361,6 +437,29 @@ void run_detector(int argc, char **argv) |
|
|
|
|
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); |
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
char *gpu_list = find_char_arg(argc, argv, "-gpus", 0); |
|
|
|
|
int *gpus = 0; |
|
|
|
|
int gpu = 0; |
|
|
|
|
int ngpus = 0; |
|
|
|
|
if(gpu_list){ |
|
|
|
|
printf("%s\n", gpu_list); |
|
|
|
|
int len = strlen(gpu_list); |
|
|
|
|
ngpus = 1; |
|
|
|
|
int i; |
|
|
|
|
for(i = 0; i < len; ++i){ |
|
|
|
|
if (gpu_list[i] == ',') ++ngpus; |
|
|
|
|
} |
|
|
|
|
gpus = calloc(ngpus, sizeof(int)); |
|
|
|
|
for(i = 0; i < ngpus; ++i){ |
|
|
|
|
gpus[i] = atoi(gpu_list); |
|
|
|
|
gpu_list = strchr(gpu_list, ',')+1; |
|
|
|
|
} |
|
|
|
|
} else { |
|
|
|
|
gpu = gpu_index; |
|
|
|
|
gpus = &gpu; |
|
|
|
|
ngpus = 1; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
int clear = find_arg(argc, argv, "-clear"); |
|
|
|
|
|
|
|
|
|
char *datacfg = argv[3]; |
|
|
|
@ -368,7 +467,7 @@ void run_detector(int argc, char **argv) |
|
|
|
|
char *weights = (argc > 5) ? argv[5] : 0; |
|
|
|
|
char *filename = (argc > 6) ? argv[6]: 0; |
|
|
|
|
if(0==strcmp(argv[2], "test")) test_detector(datacfg, cfg, weights, filename, thresh); |
|
|
|
|
else if(0==strcmp(argv[2], "train")) train_detector(datacfg, cfg, weights, clear); |
|
|
|
|
else if(0==strcmp(argv[2], "train")) train_detector(datacfg, cfg, weights, gpus, ngpus, clear); |
|
|
|
|
else if(0==strcmp(argv[2], "valid")) validate_detector(datacfg, cfg, weights); |
|
|
|
|
else if(0==strcmp(argv[2], "recall")) validate_detector_recall(cfg, weights); |
|
|
|
|
else if(0==strcmp(argv[2], "demo")) { |
|
|
|
|