|
|
|
@ -38,9 +38,17 @@ connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVA |
|
|
|
|
for(i = 0; i < outputs; ++i){ |
|
|
|
|
//layer->biases[i] = rand_normal()*scale + scale;
|
|
|
|
|
layer->biases[i] = 1; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#ifdef GPU |
|
|
|
|
layer->weights_cl = cl_make_array(layer->weights, inputs*outputs); |
|
|
|
|
layer->biases_cl = cl_make_array(layer->biases, outputs); |
|
|
|
|
|
|
|
|
|
layer->weight_updates_cl = cl_make_array(layer->weight_updates, inputs*outputs); |
|
|
|
|
layer->bias_updates_cl = cl_make_array(layer->bias_updates, outputs); |
|
|
|
|
|
|
|
|
|
layer->output_cl = cl_make_array(layer->output, outputs*batch); |
|
|
|
|
layer->delta_cl = cl_make_array(layer->delta, outputs*batch); |
|
|
|
|
#endif |
|
|
|
|
layer->activation = activation; |
|
|
|
|
return layer; |
|
|
|
@ -76,8 +84,8 @@ void backward_connected_layer(connected_layer layer, float *input, float *delta) |
|
|
|
|
{ |
|
|
|
|
int i; |
|
|
|
|
gradient_array(layer.output, layer.outputs*layer.batch, layer.activation, layer.delta); |
|
|
|
|
for(i = 0; i < layer.outputs*layer.batch; ++i){ |
|
|
|
|
layer.bias_updates[i%layer.outputs] += layer.delta[i]; |
|
|
|
|
for(i = 0; i < layer.batch; ++i){ |
|
|
|
|
axpy_cpu(layer.outputs, 1, layer.delta + i*layer.outputs, 1, layer.bias_updates, 1); |
|
|
|
|
} |
|
|
|
|
int m = layer.inputs; |
|
|
|
|
int k = layer.batch; |
|
|
|
@ -98,3 +106,61 @@ void backward_connected_layer(connected_layer layer, float *input, float *delta) |
|
|
|
|
if(c) gemm(0,1,m,n,k,1,a,k,b,k,0,c,n); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#ifdef GPU |
|
|
|
|
|
|
|
|
|
void update_connected_layer_gpu(connected_layer layer) |
|
|
|
|
{ |
|
|
|
|
axpy_ongpu(layer.outputs, layer.learning_rate, layer.bias_updates_cl, 1, layer.biases_cl, 1); |
|
|
|
|
scal_ongpu(layer.outputs, layer.momentum, layer.bias_updates_cl, 1); |
|
|
|
|
|
|
|
|
|
scal_ongpu(layer.inputs*layer.outputs, 1.-layer.learning_rate*layer.decay, layer.weights_cl, 1); |
|
|
|
|
axpy_ongpu(layer.inputs*layer.outputs, layer.learning_rate, layer.weight_updates_cl, 1, layer.weights_cl, 1); |
|
|
|
|
scal_ongpu(layer.inputs*layer.outputs, layer.momentum, layer.weight_updates_cl, 1); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void forward_connected_layer_gpu(connected_layer layer, cl_mem input) |
|
|
|
|
{ |
|
|
|
|
int i; |
|
|
|
|
for(i = 0; i < layer.batch; ++i){ |
|
|
|
|
cl_mem sub = cl_sub_array(layer.output_cl, i*layer.outputs, layer.outputs); |
|
|
|
|
copy_ongpu(layer.outputs, layer.biases_cl, 1, sub, 1); |
|
|
|
|
clReleaseMemObject(sub); |
|
|
|
|
} |
|
|
|
|
int m = layer.batch; |
|
|
|
|
int k = layer.inputs; |
|
|
|
|
int n = layer.outputs; |
|
|
|
|
cl_mem a = input; |
|
|
|
|
cl_mem b = layer.weights_cl; |
|
|
|
|
cl_mem c = layer.output_cl; |
|
|
|
|
gemm_ongpu(0,0,m,n,k,1,a,k,b,n,1,c,n); |
|
|
|
|
activate_array_ongpu(layer.output_cl, layer.outputs*layer.batch, layer.activation); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void backward_connected_layer_gpu(connected_layer layer, cl_mem input, cl_mem delta) |
|
|
|
|
{ |
|
|
|
|
int i; |
|
|
|
|
gradient_array_ongpu(layer.output_cl, layer.outputs*layer.batch, layer.activation, layer.delta_cl); |
|
|
|
|
for(i = 0; i < layer.batch; ++i){ |
|
|
|
|
cl_mem sub = cl_sub_array(layer.delta_cl, i*layer.outputs, layer.outputs); |
|
|
|
|
axpy_ongpu(layer.outputs, 1, sub, 1, layer.bias_updates_cl, 1); |
|
|
|
|
clReleaseMemObject(sub); |
|
|
|
|
} |
|
|
|
|
int m = layer.inputs; |
|
|
|
|
int k = layer.batch; |
|
|
|
|
int n = layer.outputs; |
|
|
|
|
cl_mem a = input; |
|
|
|
|
cl_mem b = layer.delta_cl; |
|
|
|
|
cl_mem c = layer.weight_updates_cl; |
|
|
|
|
gemm_ongpu(1,0,m,n,k,1,a,m,b,n,1,c,n); |
|
|
|
|
|
|
|
|
|
m = layer.batch; |
|
|
|
|
k = layer.outputs; |
|
|
|
|
n = layer.inputs; |
|
|
|
|
|
|
|
|
|
a = layer.delta_cl; |
|
|
|
|
b = layer.weights_cl; |
|
|
|
|
c = delta; |
|
|
|
|
|
|
|
|
|
if(c) gemm_ongpu(0,1,m,n,k,1,a,k,b,k,0,c,n); |
|
|
|
|
} |
|
|
|
|
#endif |
|
|
|
|