@ -156,6 +156,8 @@ Before make, you can set such options in the `Makefile`: [link](https://github.c
* `LIBSO=1` to build a library `darknet.so` and binary runable file `uselib` that uses this library. Or you can try to run so `LD_LIBRARY_PATH=./:$LD_LIBRARY_PATH ./uselib test.mp4` How to use this SO-library from your own code - you can look at C++ example: https://github.com/AlexeyAB/darknet/blob/master/src/yolo_console_dll.cpp
or use in such a way: `LD_LIBRARY_PATH=./:$LD_LIBRARY_PATH ./uselib data/coco.names cfg/yolov3.cfg yolov3.weights test.mp4`
To run Darknet on Linux use examples from this article, just use `./darknet` instead of `darknet.exe`, i.e. use this command: `./darknet detector test ./cfg/coco.data ./cfg/yolov3.cfg ./yolov3.weights`
### How to compile on Windows:
1. If you have **MSVS 2015, CUDA 10.0, cuDNN 7.4 and OpenCV 3.x** (with paths: `C:\opencv_3.0\opencv\build\include`&`C:\opencv_3.0\opencv\build\x64\vc14\lib`), then start MSVS, open `build\darknet\darknet.sln`, set **x64** and **Release** https://hsto.org/webt/uh/fk/-e/uhfk-eb0q-hwd9hsxhrikbokd6u.jpeg and do the: Build -> Build darknet. Also add Windows system variable `cudnn` with path to CUDNN: https://hsto.org/files/a49/3dc/fc4/a493dcfc4bd34a1295fd15e0e2e01f26.jpg **NOTE:** If installing OpenCV, use OpenCV 3.4.0 or earlier. This is a bug in OpenCV 3.4.1 in the C API (see [#500](https://github.com/AlexeyAB/darknet/issues/500)).
@ -335,6 +337,8 @@ It will create `.txt`-file for each `.jpg`-image-file - in the same directory an
8. Start training by using the command line: `darknet.exe detector train data/obj.data yolo-obj.cfg darknet53.conv.74`
To train on Linux use command: `./darknet detector train data/obj.data yolo-obj.cfg darknet53.conv.74` (just use `./darknet` instead of `darknet.exe`)
* (file `yolo-obj_last.weights` will be saved to the `build\darknet\x64\backup\` for each 100 iterations)
* (file `yolo-obj_xxxx.weights` will be saved to the `build\darknet\x64\backup\` for each 1000 iterations)
* (To disable Loss-Window use `darknet.exe detector train data/obj.data yolo-obj.cfg darknet53.conv.74 -dont_show`, if you train on computer without monitor like a cloud Amazaon EC2)