|
|
|
@ -315,6 +315,8 @@ void validate_detector(char *datacfg, char *cfgfile, char *weightfile) |
|
|
|
|
float thresh = .005; |
|
|
|
|
float nms = .45; |
|
|
|
|
|
|
|
|
|
int detection_count = 0; |
|
|
|
|
|
|
|
|
|
int nthreads = 4; |
|
|
|
|
image *val = calloc(nthreads, sizeof(image)); |
|
|
|
|
image *val_resized = calloc(nthreads, sizeof(image)); |
|
|
|
@ -356,6 +358,15 @@ void validate_detector(char *datacfg, char *cfgfile, char *weightfile) |
|
|
|
|
int h = val[t].h; |
|
|
|
|
get_region_boxes(l, w, h, thresh, probs, boxes, 0, map); |
|
|
|
|
if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, classes, nms); |
|
|
|
|
|
|
|
|
|
int x, y; |
|
|
|
|
for (x = 0; x < (l.w*l.h*l.n); ++x) { |
|
|
|
|
for (y = 0; y < classes; ++y)
|
|
|
|
|
{ |
|
|
|
|
if (probs[x][y]) ++detection_count; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (coco){ |
|
|
|
|
print_cocos(fp, path, boxes, probs, l.w*l.h*l.n, classes, w, h); |
|
|
|
|
} else if (imagenet){ |
|
|
|
@ -376,6 +387,7 @@ void validate_detector(char *datacfg, char *cfgfile, char *weightfile) |
|
|
|
|
fprintf(fp, "\n]\n"); |
|
|
|
|
fclose(fp); |
|
|
|
|
} |
|
|
|
|
printf("\n detection_count = %d \n", detection_count); |
|
|
|
|
fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -409,6 +421,8 @@ void validate_detector_recall(char *datacfg, char *cfgfile, char *weightfile) |
|
|
|
|
float iou_thresh = .5; |
|
|
|
|
float nms = .4; |
|
|
|
|
|
|
|
|
|
int detection_count = 0, truth_count = 0; |
|
|
|
|
|
|
|
|
|
int total = 0; |
|
|
|
|
int correct = 0; |
|
|
|
|
int proposals = 0; |
|
|
|
@ -432,6 +446,7 @@ void validate_detector_recall(char *datacfg, char *cfgfile, char *weightfile) |
|
|
|
|
|
|
|
|
|
int num_labels = 0; |
|
|
|
|
box_label *truth = read_boxes(labelpath, &num_labels); |
|
|
|
|
truth_count += num_labels; |
|
|
|
|
for(k = 0; k < l.w*l.h*l.n; ++k){ |
|
|
|
|
if(probs[k][0] > thresh){ |
|
|
|
|
++proposals; |
|
|
|
@ -458,6 +473,274 @@ void validate_detector_recall(char *datacfg, char *cfgfile, char *weightfile) |
|
|
|
|
free_image(orig); |
|
|
|
|
free_image(sized); |
|
|
|
|
} |
|
|
|
|
printf("\n truth_count = %d \n", truth_count); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
typedef struct { |
|
|
|
|
box b; |
|
|
|
|
float p; |
|
|
|
|
int class_id; |
|
|
|
|
int image_index; |
|
|
|
|
int truth_flag; |
|
|
|
|
int unique_truth_index; |
|
|
|
|
} box_prob; |
|
|
|
|
|
|
|
|
|
int detections_comparator(const void *pa, const void *pb) |
|
|
|
|
{ |
|
|
|
|
box_prob a = *(box_prob *)pa; |
|
|
|
|
box_prob b = *(box_prob *)pb; |
|
|
|
|
float diff = a.p - b.p; |
|
|
|
|
if (diff < 0) return 1; |
|
|
|
|
else if (diff > 0) return -1; |
|
|
|
|
return 0; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void validate_detector_map(char *datacfg, char *cfgfile, char *weightfile) |
|
|
|
|
{ |
|
|
|
|
int j; |
|
|
|
|
list *options = read_data_cfg(datacfg); |
|
|
|
|
char *valid_images = option_find_str(options, "valid", "data/train.list"); |
|
|
|
|
char *name_list = option_find_str(options, "names", "data/names.list"); |
|
|
|
|
//char *prefix = option_find_str(options, "results", "results");
|
|
|
|
|
char **names = get_labels(name_list); |
|
|
|
|
char *mapf = option_find_str(options, "map", 0); |
|
|
|
|
int *map = 0; |
|
|
|
|
if (mapf) map = read_map(mapf); |
|
|
|
|
|
|
|
|
|
network net = parse_network_cfg_custom(cfgfile, 1); |
|
|
|
|
if (weightfile) { |
|
|
|
|
load_weights(&net, weightfile); |
|
|
|
|
} |
|
|
|
|
set_batch_network(&net, 1); |
|
|
|
|
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
|
|
|
|
srand(time(0)); |
|
|
|
|
|
|
|
|
|
char *base = "comp4_det_test_"; |
|
|
|
|
list *plist = get_paths(valid_images); |
|
|
|
|
char **paths = (char **)list_to_array(plist); |
|
|
|
|
|
|
|
|
|
layer l = net.layers[net.n - 1]; |
|
|
|
|
int classes = l.classes; |
|
|
|
|
|
|
|
|
|
box *boxes = calloc(l.w*l.h*l.n, sizeof(box)); |
|
|
|
|
float **probs = calloc(l.w*l.h*l.n, sizeof(float *)); |
|
|
|
|
for (j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(classes, sizeof(float *)); |
|
|
|
|
|
|
|
|
|
int m = plist->size; |
|
|
|
|
int i = 0; |
|
|
|
|
int t; |
|
|
|
|
|
|
|
|
|
const float thresh = .005; |
|
|
|
|
const float nms = .45; |
|
|
|
|
const float iou_thresh = 0.5; |
|
|
|
|
|
|
|
|
|
int nthreads = 4; |
|
|
|
|
image *val = calloc(nthreads, sizeof(image)); |
|
|
|
|
image *val_resized = calloc(nthreads, sizeof(image)); |
|
|
|
|
image *buf = calloc(nthreads, sizeof(image)); |
|
|
|
|
image *buf_resized = calloc(nthreads, sizeof(image)); |
|
|
|
|
pthread_t *thr = calloc(nthreads, sizeof(pthread_t)); |
|
|
|
|
|
|
|
|
|
load_args args = { 0 }; |
|
|
|
|
args.w = net.w; |
|
|
|
|
args.h = net.h; |
|
|
|
|
args.type = IMAGE_DATA; |
|
|
|
|
|
|
|
|
|
box_prob *detections = calloc(1, sizeof(box_prob)); |
|
|
|
|
int detections_count = 0; |
|
|
|
|
int unique_truth_index = 0; |
|
|
|
|
|
|
|
|
|
int *truth_classes_count = calloc(classes, sizeof(int)); |
|
|
|
|
|
|
|
|
|
for (t = 0; t < nthreads; ++t) { |
|
|
|
|
args.path = paths[i + t]; |
|
|
|
|
args.im = &buf[t]; |
|
|
|
|
args.resized = &buf_resized[t]; |
|
|
|
|
thr[t] = load_data_in_thread(args); |
|
|
|
|
} |
|
|
|
|
time_t start = time(0); |
|
|
|
|
for (i = nthreads; i < m + nthreads; i += nthreads) { |
|
|
|
|
fprintf(stderr, "%d\n", i); |
|
|
|
|
for (t = 0; t < nthreads && i + t - nthreads < m; ++t) { |
|
|
|
|
pthread_join(thr[t], 0); |
|
|
|
|
val[t] = buf[t]; |
|
|
|
|
val_resized[t] = buf_resized[t]; |
|
|
|
|
} |
|
|
|
|
for (t = 0; t < nthreads && i + t < m; ++t) { |
|
|
|
|
args.path = paths[i + t]; |
|
|
|
|
args.im = &buf[t]; |
|
|
|
|
args.resized = &buf_resized[t]; |
|
|
|
|
thr[t] = load_data_in_thread(args); |
|
|
|
|
} |
|
|
|
|
for (t = 0; t < nthreads && i + t - nthreads < m; ++t) { |
|
|
|
|
const int image_index = i + t - nthreads; |
|
|
|
|
char *path = paths[i + t - nthreads]; |
|
|
|
|
char *id = basecfg(path); |
|
|
|
|
float *X = val_resized[t].data; |
|
|
|
|
network_predict(net, X); |
|
|
|
|
get_region_boxes(l, 1, 1, thresh, probs, boxes, 0, map); |
|
|
|
|
if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, classes, nms); |
|
|
|
|
|
|
|
|
|
char labelpath[4096]; |
|
|
|
|
find_replace(path, "images", "labels", labelpath); |
|
|
|
|
find_replace(labelpath, "JPEGImages", "labels", labelpath); |
|
|
|
|
find_replace(labelpath, ".jpg", ".txt", labelpath); |
|
|
|
|
find_replace(labelpath, ".JPEG", ".txt", labelpath); |
|
|
|
|
find_replace(labelpath, ".png", ".txt", labelpath); |
|
|
|
|
int num_labels = 0; |
|
|
|
|
box_label *truth = read_boxes(labelpath, &num_labels); |
|
|
|
|
int i, j; |
|
|
|
|
for (j = 0; j < num_labels; ++j) { |
|
|
|
|
truth_classes_count[truth[j].id]++; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
for (i = 0; i < (l.w*l.h*l.n); ++i) { |
|
|
|
|
|
|
|
|
|
int class_id; |
|
|
|
|
for (class_id = 0; class_id < classes; ++class_id) { |
|
|
|
|
float prob = probs[i][class_id]; |
|
|
|
|
if (prob > 0) { |
|
|
|
|
detections_count++; |
|
|
|
|
detections = realloc(detections, detections_count * sizeof(box_prob)); |
|
|
|
|
detections[detections_count - 1].b = boxes[i]; |
|
|
|
|
detections[detections_count - 1].p = prob; |
|
|
|
|
detections[detections_count - 1].image_index = image_index; |
|
|
|
|
detections[detections_count - 1].class_id = class_id; |
|
|
|
|
|
|
|
|
|
int truth_index = -1; |
|
|
|
|
float max_iou = 0; |
|
|
|
|
for (j = 0; j < num_labels; ++j) |
|
|
|
|
{ |
|
|
|
|
box t = { truth[j].x, truth[j].y, truth[j].w, truth[j].h }; |
|
|
|
|
//printf(" IoU = %f, prob = %f, class_id = %d, truth[j].id = %d \n",
|
|
|
|
|
// box_iou(boxes[i], t), prob, class_id, truth[j].id);
|
|
|
|
|
float current_iou = box_iou(boxes[i], t); |
|
|
|
|
if (current_iou > iou_thresh && class_id == truth[j].id) { |
|
|
|
|
if (current_iou > max_iou) { |
|
|
|
|
current_iou = max_iou; |
|
|
|
|
truth_index = unique_truth_index + j; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
// best IoU
|
|
|
|
|
if (truth_index > -1) { |
|
|
|
|
detections[detections_count - 1].truth_flag = 1; |
|
|
|
|
detections[detections_count - 1].unique_truth_index = truth_index; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
unique_truth_index += num_labels; |
|
|
|
|
|
|
|
|
|
free(id); |
|
|
|
|
free_image(val[t]); |
|
|
|
|
free_image(val_resized[t]); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// SORT(detections)
|
|
|
|
|
qsort(detections, detections_count, sizeof(box_prob), detections_comparator); |
|
|
|
|
|
|
|
|
|
typedef struct { |
|
|
|
|
double precision; |
|
|
|
|
double recall; |
|
|
|
|
int tp, fp, fn; |
|
|
|
|
} pr_t; |
|
|
|
|
|
|
|
|
|
// for PR-curve
|
|
|
|
|
pr_t **pr = calloc(classes, sizeof(pr_t*)); |
|
|
|
|
for (i = 0; i < classes; ++i) { |
|
|
|
|
pr[i] = calloc(detections_count, sizeof(pr_t)); |
|
|
|
|
} |
|
|
|
|
printf("detections_count = %d, unique_truth_index = %d \n", detections_count, unique_truth_index); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int *truth_flags = calloc(unique_truth_index, sizeof(int)); |
|
|
|
|
|
|
|
|
|
int rank; |
|
|
|
|
for (rank = 0; rank < detections_count; ++rank) { |
|
|
|
|
if(rank % 100 == 0) |
|
|
|
|
printf(" rank = %d of ranks = %d \r", rank, detections_count); |
|
|
|
|
|
|
|
|
|
if (rank > 0) { |
|
|
|
|
int class_id; |
|
|
|
|
for (class_id = 0; class_id < classes; ++class_id) { |
|
|
|
|
pr[class_id][rank].tp = pr[class_id][rank - 1].tp; |
|
|
|
|
pr[class_id][rank].fp = pr[class_id][rank - 1].fp; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
box_prob d = detections[rank]; |
|
|
|
|
// if (detected && isn't detected before)
|
|
|
|
|
if (d.truth_flag == 1) { |
|
|
|
|
if (truth_flags[d.unique_truth_index] == 0)
|
|
|
|
|
{ |
|
|
|
|
truth_flags[d.unique_truth_index] = 1; |
|
|
|
|
pr[d.class_id][rank].tp++; // true-positive
|
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
else { |
|
|
|
|
pr[d.class_id][rank].fp++; // false-positive
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for (i = 0; i < classes; ++i)
|
|
|
|
|
{ |
|
|
|
|
const int tp = pr[i][rank].tp; |
|
|
|
|
const int fp = pr[i][rank].fp; |
|
|
|
|
const int fn = truth_classes_count[i] - tp; // false-negative = objects - true-positive
|
|
|
|
|
pr[i][rank].fn = fn; |
|
|
|
|
|
|
|
|
|
if ((tp + fp) > 0) pr[i][rank].precision = (double)tp / (double)(tp + fp); |
|
|
|
|
else pr[i][rank].precision = 0; |
|
|
|
|
|
|
|
|
|
if ((tp + fn) > 0) pr[i][rank].recall = (double)tp / (double)(tp + fn); |
|
|
|
|
else pr[i][rank].recall = 0; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
free(truth_flags); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
double mean_average_precision = 0; |
|
|
|
|
|
|
|
|
|
for (i = 0; i < classes; ++i) { |
|
|
|
|
double avg_precision = 0; |
|
|
|
|
int point; |
|
|
|
|
for (point = 0; point < 11; ++point) { |
|
|
|
|
double cur_recall = point * 0.1; |
|
|
|
|
double cur_precision = 0; |
|
|
|
|
for (rank = 0; rank < detections_count; ++rank) |
|
|
|
|
{ |
|
|
|
|
if (pr[i][rank].recall >= cur_recall) { // > or >=
|
|
|
|
|
if (pr[i][rank].precision > cur_precision) { |
|
|
|
|
cur_precision = pr[i][rank].precision; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
//printf("point = %d, cur_recall = %.4f, cur_precision = %.4f \n", point, cur_recall, cur_precision);
|
|
|
|
|
|
|
|
|
|
avg_precision += cur_precision; |
|
|
|
|
} |
|
|
|
|
avg_precision = avg_precision / 11; |
|
|
|
|
printf("class = %d, name = %s, \t ap = %2.2f %% \n", i, names[i], avg_precision*100); |
|
|
|
|
mean_average_precision += avg_precision; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
mean_average_precision = mean_average_precision / classes; |
|
|
|
|
printf("\n mean average precision (mAP) = %f, or %2.2f %% \n", mean_average_precision, mean_average_precision*100); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for (i = 0; i < classes; ++i) { |
|
|
|
|
free(pr[i]); |
|
|
|
|
} |
|
|
|
|
free(pr); |
|
|
|
|
free(detections); |
|
|
|
|
free(truth_classes_count); |
|
|
|
|
|
|
|
|
|
fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh) |
|
|
|
@ -565,6 +848,7 @@ void run_detector(int argc, char **argv) |
|
|
|
|
else if(0==strcmp(argv[2], "train")) train_detector(datacfg, cfg, weights, gpus, ngpus, clear); |
|
|
|
|
else if(0==strcmp(argv[2], "valid")) validate_detector(datacfg, cfg, weights); |
|
|
|
|
else if(0==strcmp(argv[2], "recall")) validate_detector_recall(datacfg, cfg, weights); |
|
|
|
|
else if(0==strcmp(argv[2], "map")) validate_detector_map(datacfg, cfg, weights); |
|
|
|
|
else if(0==strcmp(argv[2], "demo")) { |
|
|
|
|
list *options = read_data_cfg(datacfg); |
|
|
|
|
int classes = option_find_int(options, "classes", 20); |
|
|
|
|