|
|
|
@ -609,7 +609,9 @@ convolutional_layer make_convolutional_layer(int batch, int steps, int h, int w, |
|
|
|
|
|
|
|
|
|
if (train) { |
|
|
|
|
l.x_gpu = cuda_make_array(l.output, total_batch*out_h*out_w*n); |
|
|
|
|
//l.x_norm_gpu = cuda_make_array(l.output, total_batch*out_h*out_w*n);
|
|
|
|
|
#ifndef CUDNN |
|
|
|
|
l.x_norm_gpu = cuda_make_array(l.output, total_batch*out_h*out_w*n); |
|
|
|
|
#endif // CUDNN
|
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -778,10 +780,12 @@ void resize_convolutional_layer(convolutional_layer *l, int w, int h) |
|
|
|
|
|
|
|
|
|
if (l->batch_normalize) { |
|
|
|
|
cuda_free(l->x_gpu); |
|
|
|
|
cuda_free(l->x_norm_gpu); |
|
|
|
|
|
|
|
|
|
l->x_gpu = cuda_make_array(l->output, total_batch*l->outputs); |
|
|
|
|
|
|
|
|
|
#ifndef CUDNN |
|
|
|
|
cuda_free(l->x_norm_gpu); |
|
|
|
|
l->x_norm_gpu = cuda_make_array(l->output, total_batch*l->outputs); |
|
|
|
|
#endif // CUDNN
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (l->xnor) { |
|
|
|
|