mirror of https://github.com/AlexeyAB/darknet.git
parent
2b2441313b
commit
b13ad6d5fd
15 changed files with 453 additions and 293 deletions
@ -0,0 +1,297 @@ |
||||
#include <stdio.h> |
||||
#include <time.h> |
||||
|
||||
#include "network.h" |
||||
#include "image.h" |
||||
#include "data.h" |
||||
#include "utils.h" |
||||
|
||||
#include "crop_layer.h" |
||||
#include "connected_layer.h" |
||||
#include "convolutional_layer.h" |
||||
#include "maxpool_layer.h" |
||||
#include "cost_layer.h" |
||||
#include "normalization_layer.h" |
||||
#include "freeweight_layer.h" |
||||
#include "softmax_layer.h" |
||||
#include "dropout_layer.h" |
||||
|
||||
#ifdef GPU |
||||
|
||||
void forward_network_gpu(network net, cl_mem input, cl_mem truth, int train) |
||||
{ |
||||
//printf("start\n");
|
||||
int i; |
||||
for(i = 0; i < net.n; ++i){ |
||||
//clock_t time = clock();
|
||||
if(net.types[i] == CONVOLUTIONAL){ |
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
||||
forward_convolutional_layer_gpu(layer, input); |
||||
input = layer.output_cl; |
||||
} |
||||
else if(net.types[i] == COST){ |
||||
cost_layer layer = *(cost_layer *)net.layers[i]; |
||||
forward_cost_layer_gpu(layer, input, truth); |
||||
} |
||||
else if(net.types[i] == CONNECTED){ |
||||
connected_layer layer = *(connected_layer *)net.layers[i]; |
||||
forward_connected_layer_gpu(layer, input); |
||||
input = layer.output_cl; |
||||
} |
||||
else if(net.types[i] == MAXPOOL){ |
||||
maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
||||
forward_maxpool_layer_gpu(layer, input); |
||||
input = layer.output_cl; |
||||
} |
||||
else if(net.types[i] == SOFTMAX){ |
||||
softmax_layer layer = *(softmax_layer *)net.layers[i]; |
||||
forward_softmax_layer_gpu(layer, input); |
||||
input = layer.output_cl; |
||||
} |
||||
//printf("%d %f\n", i, sec(clock()-time));
|
||||
/*
|
||||
else if(net.types[i] == CROP){ |
||||
crop_layer layer = *(crop_layer *)net.layers[i]; |
||||
forward_crop_layer(layer, input); |
||||
input = layer.output; |
||||
} |
||||
else if(net.types[i] == NORMALIZATION){ |
||||
normalization_layer layer = *(normalization_layer *)net.layers[i]; |
||||
forward_normalization_layer(layer, input); |
||||
input = layer.output; |
||||
} |
||||
*/ |
||||
} |
||||
} |
||||
|
||||
void backward_network_gpu(network net, cl_mem input) |
||||
{ |
||||
int i; |
||||
cl_mem prev_input; |
||||
cl_mem prev_delta; |
||||
for(i = net.n-1; i >= 0; --i){ |
||||
//clock_t time = clock();
|
||||
if(i == 0){ |
||||
prev_input = input; |
||||
prev_delta = 0; |
||||
}else{ |
||||
prev_input = get_network_output_cl_layer(net, i-1); |
||||
prev_delta = get_network_delta_cl_layer(net, i-1); |
||||
} |
||||
if(net.types[i] == CONVOLUTIONAL){ |
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
||||
backward_convolutional_layer_gpu(layer, prev_delta); |
||||
} |
||||
else if(net.types[i] == COST){ |
||||
cost_layer layer = *(cost_layer *)net.layers[i]; |
||||
backward_cost_layer_gpu(layer, prev_input, prev_delta); |
||||
} |
||||
else if(net.types[i] == CONNECTED){ |
||||
connected_layer layer = *(connected_layer *)net.layers[i]; |
||||
backward_connected_layer_gpu(layer, prev_input, prev_delta); |
||||
} |
||||
else if(net.types[i] == MAXPOOL){ |
||||
maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
||||
backward_maxpool_layer_gpu(layer, prev_delta); |
||||
} |
||||
else if(net.types[i] == SOFTMAX){ |
||||
softmax_layer layer = *(softmax_layer *)net.layers[i]; |
||||
backward_softmax_layer_gpu(layer, prev_delta); |
||||
} |
||||
//printf("back: %d %f\n", i, sec(clock()-time));
|
||||
} |
||||
} |
||||
|
||||
void update_network_gpu(network net) |
||||
{ |
||||
int i; |
||||
for(i = 0; i < net.n; ++i){ |
||||
if(net.types[i] == CONVOLUTIONAL){ |
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
||||
update_convolutional_layer_gpu(layer); |
||||
} |
||||
else if(net.types[i] == CONNECTED){ |
||||
connected_layer layer = *(connected_layer *)net.layers[i]; |
||||
update_connected_layer_gpu(layer); |
||||
} |
||||
} |
||||
} |
||||
|
||||
cl_mem get_network_output_cl_layer(network net, int i) |
||||
{ |
||||
if(net.types[i] == CONVOLUTIONAL){ |
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
||||
return layer.output_cl; |
||||
} |
||||
else if(net.types[i] == CONNECTED){ |
||||
connected_layer layer = *(connected_layer *)net.layers[i]; |
||||
return layer.output_cl; |
||||
} |
||||
else if(net.types[i] == MAXPOOL){ |
||||
maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
||||
return layer.output_cl; |
||||
} |
||||
else if(net.types[i] == SOFTMAX){ |
||||
softmax_layer layer = *(softmax_layer *)net.layers[i]; |
||||
return layer.output_cl; |
||||
} |
||||
return 0; |
||||
} |
||||
|
||||
cl_mem get_network_delta_cl_layer(network net, int i) |
||||
{ |
||||
if(net.types[i] == CONVOLUTIONAL){ |
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
||||
return layer.delta_cl; |
||||
} |
||||
else if(net.types[i] == CONNECTED){ |
||||
connected_layer layer = *(connected_layer *)net.layers[i]; |
||||
return layer.delta_cl; |
||||
} |
||||
else if(net.types[i] == MAXPOOL){ |
||||
maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
||||
return layer.delta_cl; |
||||
} |
||||
else if(net.types[i] == SOFTMAX){ |
||||
softmax_layer layer = *(softmax_layer *)net.layers[i]; |
||||
return layer.delta_cl; |
||||
} |
||||
return 0; |
||||
} |
||||
|
||||
float train_network_datum_gpu(network net, float *x, float *y) |
||||
{ |
||||
int x_size = get_network_input_size(net)*net.batch; |
||||
int y_size = get_network_output_size(net)*net.batch; |
||||
//clock_t time = clock();
|
||||
if(!*net.input_cl){ |
||||
*net.input_cl = cl_make_array(x, x_size); |
||||
*net.truth_cl = cl_make_array(y, y_size); |
||||
}else{ |
||||
cl_write_array(*net.input_cl, x, x_size); |
||||
cl_write_array(*net.truth_cl, y, y_size); |
||||
} |
||||
//printf("trans %f\n", sec(clock()-time));
|
||||
//time = clock();
|
||||
forward_network_gpu(net, *net.input_cl, *net.truth_cl, 1); |
||||
//printf("forw %f\n", sec(clock()-time));
|
||||
//time = clock();
|
||||
backward_network_gpu(net, *net.input_cl); |
||||
//printf("back %f\n", sec(clock()-time));
|
||||
//time = clock();
|
||||
update_network_gpu(net); |
||||
float error = get_network_cost(net); |
||||
//printf("updt %f\n", sec(clock()-time));
|
||||
//time = clock();
|
||||
return error; |
||||
} |
||||
|
||||
float train_network_sgd_gpu(network net, data d, int n) |
||||
{ |
||||
int batch = net.batch; |
||||
float *X = calloc(batch*d.X.cols, sizeof(float)); |
||||
float *y = calloc(batch*d.y.cols, sizeof(float)); |
||||
|
||||
int i; |
||||
float sum = 0; |
||||
for(i = 0; i < n; ++i){ |
||||
get_random_batch(d, batch, X, y); |
||||
float err = train_network_datum_gpu(net, X, y); |
||||
sum += err; |
||||
} |
||||
free(X); |
||||
free(y); |
||||
return (float)sum/(n*batch); |
||||
} |
||||
|
||||
float train_network_data_gpu(network net, data d, int n) |
||||
{ |
||||
int batch = net.batch; |
||||
float *X = calloc(batch*d.X.cols, sizeof(float)); |
||||
float *y = calloc(batch*d.y.cols, sizeof(float)); |
||||
|
||||
int i; |
||||
float sum = 0; |
||||
for(i = 0; i < n; ++i){ |
||||
get_next_batch(d, batch, i*batch, X, y); |
||||
float err = train_network_datum_gpu(net, X, y); |
||||
sum += err; |
||||
} |
||||
free(X); |
||||
free(y); |
||||
return (float)sum/(n*batch); |
||||
} |
||||
|
||||
float *get_network_output_layer_gpu(network net, int i) |
||||
{ |
||||
if(net.types[i] == CONVOLUTIONAL){ |
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
||||
return layer.output; |
||||
} |
||||
else if(net.types[i] == CONNECTED){ |
||||
connected_layer layer = *(connected_layer *)net.layers[i]; |
||||
return layer.output; |
||||
} |
||||
else if(net.types[i] == MAXPOOL){ |
||||
maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
||||
return layer.output; |
||||
} |
||||
else if(net.types[i] == SOFTMAX){ |
||||
softmax_layer layer = *(softmax_layer *)net.layers[i]; |
||||
pull_softmax_layer_output(layer); |
||||
return layer.output; |
||||
} |
||||
return 0; |
||||
} |
||||
|
||||
float *get_network_output_gpu(network net) |
||||
{ |
||||
int i; |
||||
for(i = net.n-1; i > 0; --i) if(net.types[i] != COST) break; |
||||
return get_network_output_layer_gpu(net, i); |
||||
} |
||||
|
||||
float *network_predict_gpu(network net, float *input) |
||||
{ |
||||
|
||||
int size = get_network_input_size(net) * net.batch; |
||||
cl_mem input_cl = cl_make_array(input, size); |
||||
forward_network_gpu(net, input_cl, 0, 0); |
||||
float *out = get_network_output_gpu(net); |
||||
clReleaseMemObject(input_cl); |
||||
return out; |
||||
} |
||||
|
||||
matrix network_predict_data_gpu(network net, data test) |
||||
{ |
||||
int i,j,b; |
||||
int k = get_network_output_size(net); |
||||
matrix pred = make_matrix(test.X.rows, k); |
||||
float *X = calloc(net.batch*test.X.cols, sizeof(float)); |
||||
for(i = 0; i < test.X.rows; i += net.batch){ |
||||
for(b = 0; b < net.batch; ++b){ |
||||
if(i+b == test.X.rows) break; |
||||
memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float)); |
||||
} |
||||
float *out = network_predict_gpu(net, X); |
||||
for(b = 0; b < net.batch; ++b){ |
||||
if(i+b == test.X.rows) break; |
||||
for(j = 0; j < k; ++j){ |
||||
pred.vals[i+b][j] = out[j+b*k]; |
||||
} |
||||
} |
||||
} |
||||
free(X); |
||||
return pred;
|
||||
} |
||||
float network_accuracy_gpu(network net, data d) |
||||
{ |
||||
matrix guess = network_predict_data_gpu(net, d); |
||||
float acc = matrix_accuracy(d.y, guess); |
||||
free_matrix(guess); |
||||
return acc; |
||||
} |
||||
|
||||
|
||||
|
||||
#endif |
Loading…
Reference in new issue