Added Gaussian YOLOv3 layer [Gaussian_yolo]

pull/4269/head
AlexeyAB 6 years ago
parent bb7d69941c
commit b3a2495298
  1. 2
      Makefile
  2. 2
      build/darknet/darknet.vcxproj
  3. 2
      include/darknet.h
  4. 10
      src/box.c
  5. 1
      src/box.h
  6. 11
      src/convolutional_kernels.cu
  7. 11
      src/convolutional_layer.c
  8. 11
      src/data.c
  9. 445
      src/gaussian_yolo_layer.c
  10. 20
      src/gaussian_yolo_layer.h
  11. 16
      src/network.c
  12. 65
      src/parser.c
  13. 10
      src/yolo_layer.c

@ -118,7 +118,7 @@ LDFLAGS+= -L/usr/local/zed/lib -lsl_core -lsl_input -lsl_zed
#-lstdc++ -D_GLIBCXX_USE_CXX11_ABI=0
endif
OBJ=image_opencv.o http_stream.o gemm.o utils.o dark_cuda.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o captcha.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o dice.o yolo.o detector.o layer.o compare.o classifier.o local_layer.o swag.o shortcut_layer.o activation_layer.o rnn_layer.o gru_layer.o rnn.o rnn_vid.o crnn_layer.o demo.o tag.o cifar.o go.o batchnorm_layer.o art.o region_layer.o reorg_layer.o reorg_old_layer.o super.o voxel.o tree.o yolo_layer.o upsample_layer.o lstm_layer.o conv_lstm_layer.o scale_channels_layer.o sam_layer.o
OBJ=image_opencv.o http_stream.o gemm.o utils.o dark_cuda.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o captcha.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o dice.o yolo.o detector.o layer.o compare.o classifier.o local_layer.o swag.o shortcut_layer.o activation_layer.o rnn_layer.o gru_layer.o rnn.o rnn_vid.o crnn_layer.o demo.o tag.o cifar.o go.o batchnorm_layer.o art.o region_layer.o reorg_layer.o reorg_old_layer.o super.o voxel.o tree.o yolo_layer.o gaussian_yolo_layer.o upsample_layer.o lstm_layer.o conv_lstm_layer.o scale_channels_layer.o sam_layer.o
ifeq ($(GPU), 1)
LDFLAGS+= -lstdc++
OBJ+=convolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o network_kernels.o avgpool_layer_kernels.o

@ -199,6 +199,7 @@
<ClCompile Include="..\..\src\detector.c" />
<ClCompile Include="..\..\src\dice.c" />
<ClCompile Include="..\..\src\dropout_layer.c" />
<ClCompile Include="..\..\src\gaussian_yolo_layer.c" />
<ClCompile Include="..\..\src\gemm.c" />
<ClCompile Include="..\..\src\getopt.c" />
<ClCompile Include="..\..\src\gettimeofday.c" />
@ -263,6 +264,7 @@
<ClInclude Include="..\..\src\demo.h" />
<ClInclude Include="..\..\src\detection_layer.h" />
<ClInclude Include="..\..\src\dropout_layer.h" />
<ClInclude Include="..\..\src\gaussian_yolo_layer.h" />
<ClInclude Include="..\..\src\gemm.h" />
<ClInclude Include="..\..\src\getopt.h" />
<ClInclude Include="..\..\src\gettimeofday.h" />

@ -149,6 +149,7 @@ typedef enum {
XNOR,
REGION,
YOLO,
GAUSSIAN_YOLO,
ISEG,
REORG,
REORG_OLD,
@ -728,6 +729,7 @@ typedef struct detection{
float *mask;
float objectness;
int sort_class;
float *uc; // Gaussian_YOLOv3 - tx,ty,tw,th uncertainty
} detection;
// matrix.h

@ -13,6 +13,16 @@ box float_to_box(float *f)
return b;
}
box float_to_box_stride(float *f, int stride)
{
box b = { 0 };
b.x = f[0];
b.y = f[1 * stride];
b.w = f[2 * stride];
b.h = f[3 * stride];
return b;
}
dbox derivative(box a, box b)
{
dbox d;

@ -31,6 +31,7 @@ typedef struct detection_with_class {
extern "C" {
#endif
box float_to_box(float *f);
box float_to_box_stride(float *f, int stride);
float box_iou(box a, box b);
float box_rmse(box a, box b);
dxrep dx_box_iou(box a, box b, IOU_LOSS iou_loss);

@ -10,6 +10,7 @@
#include "col2im.h"
#include "utils.h"
#include "dark_cuda.h"
#include "box.h"
__global__ void binarize_kernel(float *x, int n, float *binary)
@ -892,16 +893,6 @@ void backward_convolutional_layer_gpu(convolutional_layer l, network_state state
}
}
static box float_to_box_stride(float *f, int stride)
{
box b = { 0 };
b.x = f[0];
b.y = f[1 * stride];
b.w = f[2 * stride];
b.h = f[3 * stride];
return b;
}
__global__ void calc_avg_activation_kernel(float *src, float *dst, int size, int channels, int batches)
{
int i = blockIdx.x * blockDim.x + threadIdx.x;

@ -5,6 +5,7 @@
#include "col2im.h"
#include "blas.h"
#include "gemm.h"
#include "box.h"
#include <stdio.h>
#include <time.h>
@ -1171,16 +1172,6 @@ void forward_convolutional_layer(convolutional_layer l, network_state state)
}
}
static box float_to_box_stride(float *f, int stride)
{
box b = { 0 };
b.x = f[0];
b.y = f[1 * stride];
b.w = f[2 * stride];
b.h = f[3 * stride];
return b;
}
void assisted_excitation_forward(convolutional_layer l, network_state state)
{
const int iteration_num = (*state.net.seen) / (state.net.batch*state.net.subdivisions);

@ -2,6 +2,7 @@
#include "utils.h"
#include "image.h"
#include "dark_cuda.h"
#include "box.h"
#include <stdio.h>
#include <stdlib.h>
@ -779,16 +780,6 @@ data load_data_swag(char **paths, int n, int classes, float jitter)
return d;
}
static box float_to_box_stride(float *f, int stride)
{
box b = { 0 };
b.x = f[0];
b.y = f[1 * stride];
b.w = f[2 * stride];
b.h = f[3 * stride];
return b;
}
void blend_truth(float *new_truth, int boxes, float *old_truth)
{
const int t_size = 4 + 1;

@ -0,0 +1,445 @@
// Gaussian YOLOv3 implementation
// Author: Jiwoong Choi
// ICCV 2019 Paper: http://openaccess.thecvf.com/content_ICCV_2019/html/Choi_Gaussian_YOLOv3_An_Accurate_and_Fast_Object_Detector_Using_Localization_ICCV_2019_paper.html
// arxiv.org: https://arxiv.org/abs/1904.04620v2
// source code: https://github.com/jwchoi384/Gaussian_YOLOv3
#include "gaussian_yolo_layer.h"
#include "activations.h"
#include "blas.h"
#include "box.h"
#include "dark_cuda.h"
#include "utils.h"
#include <stdio.h>
#include <assert.h>
#include <string.h>
#include <stdlib.h>
#ifndef M_PI
#define M_PI 3.141592
#endif
layer make_gaussian_yolo_layer(int batch, int w, int h, int n, int total, int *mask, int classes)
{
int i;
layer l = {0};
l.type = GAUSSIAN_YOLO;
l.n = n;
l.total = total;
l.batch = batch;
l.h = h;
l.w = w;
l.c = n*(classes + 8 + 1);
l.out_w = l.w;
l.out_h = l.h;
l.out_c = l.c;
l.classes = classes;
l.cost = calloc(1, sizeof(float));
l.biases = calloc(total*2, sizeof(float));
if(mask) l.mask = mask;
else{
l.mask = calloc(n, sizeof(int));
for(i = 0; i < n; ++i){
l.mask[i] = i;
}
}
l.bias_updates = calloc(n*2, sizeof(float));
l.outputs = h*w*n*(classes + 8 + 1);
l.inputs = l.outputs;
l.truths = 90*(4 + 1);
l.delta = calloc(batch*l.outputs, sizeof(float));
l.output = calloc(batch*l.outputs, sizeof(float));
for(i = 0; i < total*2; ++i){
l.biases[i] = .5;
}
l.forward = forward_gaussian_yolo_layer;
l.backward = backward_gaussian_yolo_layer;
#ifdef GPU
l.forward_gpu = forward_gaussian_yolo_layer_gpu;
l.backward_gpu = backward_gaussian_yolo_layer_gpu;
l.output_gpu = cuda_make_array(l.output, batch*l.outputs);
l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs);
#endif
fprintf(stderr, "Gaussian_yolo\n");
srand(0);
return l;
}
void resize_gaussian_yolo_layer(layer *l, int w, int h)
{
l->w = w;
l->h = h;
l->outputs = h*w*l->n*(l->classes + 8 + 1);
l->inputs = l->outputs;
l->output = realloc(l->output, l->batch*l->outputs*sizeof(float));
l->delta = realloc(l->delta, l->batch*l->outputs*sizeof(float));
#ifdef GPU
cuda_free(l->delta_gpu);
cuda_free(l->output_gpu);
l->delta_gpu = cuda_make_array(l->delta, l->batch*l->outputs);
l->output_gpu = cuda_make_array(l->output, l->batch*l->outputs);
#endif
}
box get_gaussian_yolo_box(float *x, float *biases, int n, int index, int i, int j, int lw, int lh, int w, int h, int stride)
{
box b;
b.x = (i + x[index + 0*stride]) / lw;
b.y = (j + x[index + 2*stride]) / lh;
b.w = exp(x[index + 4*stride]) * biases[2*n] / w;
b.h = exp(x[index + 6*stride]) * biases[2*n+1] / h;
return b;
}
float delta_gaussian_yolo_box(box truth, float *x, float *biases, int n, int index, int i, int j, int lw, int lh, int w, int h, float *delta, float scale, int stride)
{
box pred = get_gaussian_yolo_box(x, biases, n, index, i, j, lw, lh, w, h, stride);
float iou = box_iou(pred, truth);
float tx = (truth.x*lw - i);
float ty = (truth.y*lh - j);
float tw = log(truth.w*w / biases[2*n]);
float th = log(truth.h*h / biases[2*n + 1]);
float sigma_const = 0.3;
float epsi = pow(10,-9);
float in_exp_x = (tx - x[index + 0*stride])/x[index+1*stride];
float in_exp_x_2 = pow(in_exp_x, 2);
float normal_dist_x = exp(in_exp_x_2*(-1./2.))/(sqrt(M_PI * 2.0)*(x[index+1*stride]+sigma_const));
float in_exp_y = (ty - x[index + 2*stride])/x[index+3*stride];
float in_exp_y_2 = pow(in_exp_y, 2);
float normal_dist_y = exp(in_exp_y_2*(-1./2.))/(sqrt(M_PI * 2.0)*(x[index+3*stride]+sigma_const));
float in_exp_w = (tw - x[index + 4*stride])/x[index+5*stride];
float in_exp_w_2 = pow(in_exp_w, 2);
float normal_dist_w = exp(in_exp_w_2*(-1./2.))/(sqrt(M_PI * 2.0)*(x[index+5*stride]+sigma_const));
float in_exp_h = (th - x[index + 6*stride])/x[index+7*stride];
float in_exp_h_2 = pow(in_exp_h, 2);
float normal_dist_h = exp(in_exp_h_2*(-1./2.))/(sqrt(M_PI * 2.0)*(x[index+7*stride]+sigma_const));
float temp_x = (1./2.) * 1./(normal_dist_x+epsi) * normal_dist_x * scale;
float temp_y = (1./2.) * 1./(normal_dist_y+epsi) * normal_dist_y * scale;
float temp_w = (1./2.) * 1./(normal_dist_w+epsi) * normal_dist_w * scale;
float temp_h = (1./2.) * 1./(normal_dist_h+epsi) * normal_dist_h * scale;
delta[index + 0*stride] = temp_x * in_exp_x * (1./x[index+1*stride]);
delta[index + 2*stride] = temp_y * in_exp_y * (1./x[index+3*stride]);
delta[index + 4*stride] = temp_w * in_exp_w * (1./x[index+5*stride]);
delta[index + 6*stride] = temp_h * in_exp_h * (1./x[index+7*stride]);
delta[index + 1*stride] = temp_x * (in_exp_x_2/x[index+1*stride] - 1./(x[index+1*stride]+sigma_const));
delta[index + 3*stride] = temp_y * (in_exp_y_2/x[index+3*stride] - 1./(x[index+3*stride]+sigma_const));
delta[index + 5*stride] = temp_w * (in_exp_w_2/x[index+5*stride] - 1./(x[index+5*stride]+sigma_const));
delta[index + 7*stride] = temp_h * (in_exp_h_2/x[index+7*stride] - 1./(x[index+7*stride]+sigma_const));
return iou;
}
void delta_gaussian_yolo_class(float *output, float *delta, int index, int class, int classes, int stride, float *avg_cat)
{
int n;
if (delta[index]){
delta[index + stride*class] = 1 - output[index + stride*class];
if(avg_cat) *avg_cat += output[index + stride*class];
return;
}
for(n = 0; n < classes; ++n){
delta[index + stride*n] = ((n == class)?1 : 0) - output[index + stride*n];
if(n == class && avg_cat) *avg_cat += output[index + stride*n];
}
}
static int entry_gaussian_index(layer l, int batch, int location, int entry)
{
int n = location / (l.w*l.h);
int loc = location % (l.w*l.h);
return batch*l.outputs + n*l.w*l.h*(8+l.classes+1) + entry*l.w*l.h + loc;
}
void forward_gaussian_yolo_layer(const layer l, network net)
{
int i,j,b,t,n;
memcpy(l.output, net.input, l.outputs*l.batch*sizeof(float));
#ifndef GPU
for (b = 0; b < l.batch; ++b){
for(n = 0; n < l.n; ++n){
// x : mu, sigma
int index = entry_gaussian_index(l, b, n*l.w*l.h, 0);
activate_array(l.output + index, 2*l.w*l.h, LOGISTIC);
// y : mu, sigma
index = entry_gaussian_index(l, b, n*l.w*l.h, 2);
activate_array(l.output + index, 2*l.w*l.h, LOGISTIC);
// w : sigma
index = entry_gaussian_index(l, b, n*l.w*l.h, 5);
activate_array(l.output + index, l.w*l.h, LOGISTIC);
// h : sigma
index = entry_gaussian_index(l, b, n*l.w*l.h, 7);
activate_array(l.output + index, l.w*l.h, LOGISTIC);
// objectness & class
index = entry_gaussian_index(l, b, n*l.w*l.h, 8);
activate_array(l.output + index, (1+l.classes)*l.w*l.h, LOGISTIC);
}
}
#endif
memset(l.delta, 0, l.outputs * l.batch * sizeof(float));
if(!net.train) return;
float avg_iou = 0;
float recall = 0;
float recall75 = 0;
float avg_cat = 0;
float avg_obj = 0;
float avg_anyobj = 0;
int count = 0;
int class_count = 0;
*(l.cost) = 0;
for (b = 0; b < l.batch; ++b) {
for (j = 0; j < l.h; ++j) {
for (i = 0; i < l.w; ++i) {
for (n = 0; n < l.n; ++n) {
int box_index = entry_gaussian_index(l, b, n*l.w*l.h + j*l.w + i, 0);
box pred = get_gaussian_yolo_box(l.output, l.biases, l.mask[n], box_index, i, j, l.w, l.h, net.w, net.h, l.w*l.h);
float best_iou = 0;
int best_t = 0;
for(t = 0; t < l.max_boxes; ++t){
box truth = float_to_box_stride(net.truth + t*(4 + 1) + b*l.truths, 1);
if(!truth.x) break;
float iou = box_iou(pred, truth);
if (iou > best_iou) {
best_iou = iou;
best_t = t;
}
}
int obj_index = entry_gaussian_index(l, b, n*l.w*l.h + j*l.w + i, 8);
avg_anyobj += l.output[obj_index];
l.delta[obj_index] = 0 - l.output[obj_index];
if (best_iou > l.ignore_thresh) {
l.delta[obj_index] = 0;
}
if (best_iou > l.truth_thresh) {
l.delta[obj_index] = 1 - l.output[obj_index];
int class = net.truth[best_t*(4 + 1) + b*l.truths + 4];
if (l.map) class = l.map[class];
int class_index = entry_gaussian_index(l, b, n*l.w*l.h + j*l.w + i, 9);
delta_gaussian_yolo_class(l.output, l.delta, class_index, class, l.classes, l.w*l.h, 0);
box truth = float_to_box_stride(net.truth + best_t*(4 + 1) + b*l.truths, 1);
delta_gaussian_yolo_box(truth, l.output, l.biases, l.mask[n], box_index, i, j, l.w, l.h, net.w, net.h, l.delta, (2-truth.w*truth.h), l.w*l.h);
}
}
}
}
for(t = 0; t < l.max_boxes; ++t){
box truth = float_to_box_stride(net.truth + t*(4 + 1) + b*l.truths, 1);
if(!truth.x) break;
float best_iou = 0;
int best_n = 0;
i = (truth.x * l.w);
j = (truth.y * l.h);
box truth_shift = truth;
truth_shift.x = truth_shift.y = 0;
for(n = 0; n < l.total; ++n){
box pred = {0};
pred.w = l.biases[2*n]/net.w;
pred.h = l.biases[2*n+1]/net.h;
float iou = box_iou(pred, truth_shift);
if (iou > best_iou){
best_iou = iou;
best_n = n;
}
}
int mask_n = int_index(l.mask, best_n, l.n);
if(mask_n >= 0){
int box_index = entry_gaussian_index(l, b, mask_n*l.w*l.h + j*l.w + i, 0);
float iou = delta_gaussian_yolo_box(truth, l.output, l.biases, best_n, box_index, i, j, l.w, l.h, net.w, net.h, l.delta, (2-truth.w*truth.h), l.w*l.h);
int obj_index = entry_gaussian_index(l, b, mask_n*l.w*l.h + j*l.w + i, 8);
avg_obj += l.output[obj_index];
l.delta[obj_index] = 1 - l.output[obj_index];
int class = net.truth[t*(4 + 1) + b*l.truths + 4];
if (l.map) class = l.map[class];
int class_index = entry_gaussian_index(l, b, mask_n*l.w*l.h + j*l.w + i, 9);
delta_gaussian_yolo_class(l.output, l.delta, class_index, class, l.classes, l.w*l.h, &avg_cat);
++count;
++class_count;
if(iou > .5) recall += 1;
if(iou > .75) recall75 += 1;
avg_iou += iou;
}
}
}
*(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2);
printf("Region %d Avg IOU: %f, Class: %f, Obj: %f, No Obj: %f, .5R: %f, .75R: %f, count: %d\n", net.index, avg_iou/count, avg_cat/class_count, avg_obj/count, avg_anyobj/(l.w*l.h*l.n*l.batch), recall/count, recall75/count, count);
}
void backward_gaussian_yolo_layer(const layer l, network net)
{
axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, net.delta, 1);
}
void correct_gaussian_yolo_boxes(detection *dets, int n, int w, int h, int netw, int neth, int relative)
{
int i;
int new_w=0;
int new_h=0;
if (((float)netw/w) < ((float)neth/h)) {
new_w = netw;
new_h = (h * netw)/w;
} else {
new_h = neth;
new_w = (w * neth)/h;
}
for (i = 0; i < n; ++i){
box b = dets[i].bbox;
b.x = (b.x - (netw - new_w)/2./netw) / ((float)new_w/netw);
b.y = (b.y - (neth - new_h)/2./neth) / ((float)new_h/neth);
b.w *= (float)netw/new_w;
b.h *= (float)neth/new_h;
if(!relative){
b.x *= w;
b.w *= w;
b.y *= h;
b.h *= h;
}
dets[i].bbox = b;
}
}
int gaussian_yolo_num_detections(layer l, float thresh)
{
int i, n;
int count = 0;
for (i = 0; i < l.w*l.h; ++i){
for(n = 0; n < l.n; ++n){
int obj_index = entry_gaussian_index(l, 0, n*l.w*l.h + i, 8);
if(l.output[obj_index] > thresh){
++count;
}
}
}
return count;
}
/*
void avg_flipped_gaussian_yolo(layer l)
{
int i,j,n,z;
float *flip = l.output + l.outputs;
for (j = 0; j < l.h; ++j) {
for (i = 0; i < l.w/2; ++i) {
for (n = 0; n < l.n; ++n) {
for(z = 0; z < l.classes + 8 + 1; ++z){
int i1 = z*l.w*l.h*l.n + n*l.w*l.h + j*l.w + i;
int i2 = z*l.w*l.h*l.n + n*l.w*l.h + j*l.w + (l.w - i - 1);
float swap = flip[i1];
flip[i1] = flip[i2];
flip[i2] = swap;
if(z == 0){
flip[i1] = -flip[i1];
flip[i2] = -flip[i2];
}
}
}
}
}
for(i = 0; i < l.outputs; ++i){
l.output[i] = (l.output[i] + flip[i])/2.;
}
}
*/
int get_gaussian_yolo_detections(layer l, int w, int h, int netw, int neth, float thresh, int *map, int relative, detection *dets)
{
int i,j,n;
float *predictions = l.output;
//if (l.batch == 2) avg_flipped_gaussian_yolo(l);
int count = 0;
for (i = 0; i < l.w*l.h; ++i){
int row = i / l.w;
int col = i % l.w;
for(n = 0; n < l.n; ++n){
int obj_index = entry_gaussian_index(l, 0, n*l.w*l.h + i, 8);
float objectness = predictions[obj_index];
if(objectness <= thresh) continue;
int box_index = entry_gaussian_index(l, 0, n*l.w*l.h + i, 0);
dets[count].bbox = get_gaussian_yolo_box(predictions, l.biases, l.mask[n], box_index, col, row, l.w, l.h, netw, neth, l.w*l.h);
dets[count].objectness = objectness;
dets[count].classes = l.classes;
dets[count].uc[0] = predictions[entry_gaussian_index(l, 0, n*l.w*l.h + i, 1)]; // tx uncertainty
dets[count].uc[1] = predictions[entry_gaussian_index(l, 0, n*l.w*l.h + i, 3)]; // ty uncertainty
dets[count].uc[2] = predictions[entry_gaussian_index(l, 0, n*l.w*l.h + i, 5)]; // tw uncertainty
dets[count].uc[3] = predictions[entry_gaussian_index(l, 0, n*l.w*l.h + i, 7)]; // th uncertainty
for(j = 0; j < l.classes; ++j){
int class_index = entry_gaussian_index(l, 0, n*l.w*l.h + i, 9 + j);
float uc_aver = (dets[count].uc[0] + dets[count].uc[1] + dets[count].uc[2] + dets[count].uc[3])/4.0;
float prob = objectness*predictions[class_index]*(1.0-uc_aver);
dets[count].prob[j] = (prob > thresh) ? prob : 0;
}
++count;
}
}
correct_gaussian_yolo_boxes(dets, count, w, h, netw, neth, relative);
return count;
}
#ifdef GPU
void forward_gaussian_yolo_layer_gpu(const layer l, network net)
{
copy_ongpu(l.batch*l.inputs, net.input_gpu, 1, l.output_gpu, 1);
int b, n;
for (b = 0; b < l.batch; ++b)
{
for(n = 0; n < l.n; ++n)
{
// x : mu, sigma
int index = entry_gaussian_index(l, b, n*l.w*l.h, 0);
activate_array_ongpu(l.output_gpu + index, 2*l.w*l.h, LOGISTIC);
// y : mu, sigma
index = entry_gaussian_index(l, b, n*l.w*l.h, 2);
activate_array_ongpu(l.output_gpu + index, 2*l.w*l.h, LOGISTIC);
// w : sigma
index = entry_gaussian_index(l, b, n*l.w*l.h, 5);
activate_array_ongpu(l.output_gpu + index, l.w*l.h, LOGISTIC);
// h : sigma
index = entry_gaussian_index(l, b, n*l.w*l.h, 7);
activate_array_ongpu(l.output_gpu + index, l.w*l.h, LOGISTIC);
// objectness & class
index = entry_gaussian_index(l, b, n*l.w*l.h, 8);
activate_array_ongpu(l.output_gpu + index, (1+l.classes)*l.w*l.h, LOGISTIC);
}
}
if(!net.train || l.onlyforward){
cuda_pull_array(l.output_gpu, l.output, l.batch*l.outputs);
return;
}
cuda_pull_array(l.output_gpu, net.input, l.batch*l.inputs);
forward_gaussian_yolo_layer(l, net);
cuda_push_array(l.delta_gpu, l.delta, l.batch*l.outputs);
}
void backward_gaussian_yolo_layer_gpu(const layer l, network net)
{
axpy_ongpu(l.batch*l.inputs, 1, l.delta_gpu, 1, net.delta_gpu, 1);
}
#endif

@ -0,0 +1,20 @@
//Gaussian YOLOv3 implementation
#ifndef GAUSSIAN_YOLO_LAYER_H
#define GAUSSIAN_YOLO_LAYER_H
#include "darknet.h"
#include "layer.h"
#include "network.h"
layer make_gaussian_yolo_layer(int batch, int w, int h, int n, int total, int *mask, int classes);
void forward_gaussian_yolo_layer(const layer l, network net);
void backward_gaussian_yolo_layer(const layer l, network net);
void resize_gaussian_yolo_layer(layer *l, int w, int h);
int gaussian_yolo_num_detections(layer l, float thresh);
#ifdef GPU
void forward_gaussian_yolo_layer_gpu(const layer l, network net);
void backward_gaussian_yolo_layer_gpu(layer l, network net);
#endif
#endif

@ -34,6 +34,7 @@
#include "shortcut_layer.h"
#include "scale_channels_layer.h"
#include "yolo_layer.h"
#include "gaussian_yolo_layer.h"
#include "upsample_layer.h"
#include "parser.h"
@ -202,6 +203,10 @@ char *get_layer_string(LAYER_TYPE a)
return "detection";
case REGION:
return "region";
case YOLO:
return "yolo";
case GAUSSIAN_YOLO:
return "Gaussian_yolo";
case DROPOUT:
return "dropout";
case CROP:
@ -524,6 +529,8 @@ int resize_network(network *net, int w, int h)
resize_region_layer(&l, w, h);
}else if (l.type == YOLO) {
resize_yolo_layer(&l, w, h);
}else if (l.type == GAUSSIAN_YOLO) {
resize_gaussian_yolo_layer(&l, w, h);
}else if(l.type == ROUTE){
resize_route_layer(&l, net);
}else if (l.type == SHORTCUT) {
@ -687,6 +694,9 @@ int num_detections(network *net, float thresh)
if (l.type == YOLO) {
s += yolo_num_detections(l, thresh);
}
if (l.type == GAUSSIAN_YOLO) {
s += gaussian_yolo_num_detections(l, thresh);
}
if (l.type == DETECTION || l.type == REGION) {
s += l.w*l.h*l.n;
}
@ -703,6 +713,8 @@ detection *make_network_boxes(network *net, float thresh, int *num)
detection* dets = (detection*)calloc(nboxes, sizeof(detection));
for (i = 0; i < nboxes; ++i) {
dets[i].prob = (float*)calloc(l.classes, sizeof(float));
// tx,ty,tw,th uncertainty
dets[i].uc = calloc(4, sizeof(float)); // Gaussian_YOLOv3
if (l.coords > 4) {
dets[i].mask = (float*)calloc(l.coords - 4, sizeof(float));
}
@ -749,6 +761,10 @@ void fill_network_boxes(network *net, int w, int h, float thresh, float hier, in
prev_classes, l.classes);
}
}
if (l.type == GAUSSIAN_YOLO) {
int count = get_gaussian_yolo_detections(l, w, h, net->w, net->h, thresh, map, relative, dets);
dets += count;
}
if (l.type == REGION) {
custom_get_region_detections(l, w, h, net->w, net->h, thresh, map, hier, relative, dets, letter);
//get_region_detections(l, w, h, net->w, net->h, thresh, map, hier, relative, dets);

@ -38,6 +38,7 @@
#include "upsample_layer.h"
#include "version.h"
#include "yolo_layer.h"
#include "gaussian_yolo_layer.h"
typedef struct{
char *type;
@ -57,6 +58,7 @@ LAYER_TYPE string_to_layer_type(char * type)
if (strcmp(type, "[detection]")==0) return DETECTION;
if (strcmp(type, "[region]")==0) return REGION;
if (strcmp(type, "[yolo]") == 0) return YOLO;
if (strcmp(type, "[Gaussian_yolo]") == 0) return GAUSSIAN_YOLO;
if (strcmp(type, "[local]")==0) return LOCAL;
if (strcmp(type, "[conv]")==0
|| strcmp(type, "[convolutional]")==0) return CONVOLUTIONAL;
@ -390,6 +392,67 @@ layer parse_yolo(list *options, size_params params)
return l;
}
int *parse_gaussian_yolo_mask(char *a, int *num) // Gaussian_YOLOv3
{
int *mask = 0;
if (a) {
int len = strlen(a);
int n = 1;
int i;
for (i = 0; i < len; ++i) {
if (a[i] == ',') ++n;
}
mask = calloc(n, sizeof(int));
for (i = 0; i < n; ++i) {
int val = atoi(a);
mask[i] = val;
a = strchr(a, ',') + 1;
}
*num = n;
}
return mask;
}
layer parse_gaussian_yolo(list *options, size_params params) // Gaussian_YOLOv3
{
int classes = option_find_int(options, "classes", 20);
int total = option_find_int(options, "num", 1);
int num = total;
char *a = option_find_str(options, "mask", 0);
int *mask = parse_gaussian_yolo_mask(a, &num);
layer l = make_gaussian_yolo_layer(params.batch, params.w, params.h, num, total, mask, classes);
assert(l.outputs == params.inputs);
l.max_boxes = option_find_int_quiet(options, "max", 90);
l.jitter = option_find_float(options, "jitter", .2);
l.ignore_thresh = option_find_float(options, "ignore_thresh", .5);
l.truth_thresh = option_find_float(options, "truth_thresh", 1);
l.random = option_find_int_quiet(options, "random", 0);
char *map_file = option_find_str(options, "map", 0);
if (map_file) l.map = read_map(map_file);
a = option_find_str(options, "anchors", 0);
if (a) {
int len = strlen(a);
int n = 1;
int i;
for (i = 0; i < len; ++i) {
if (a[i] == ',') ++n;
}
for (i = 0; i < n; ++i) {
float bias = atof(a);
l.biases[i] = bias;
a = strchr(a, ',') + 1;
}
}
return l;
}
layer parse_region(list *options, size_params params)
{
int coords = option_find_int(options, "coords", 4);
@ -923,6 +986,8 @@ network parse_network_cfg_custom(char *filename, int batch, int time_steps)
l = parse_region(options, params);
}else if (lt == YOLO) {
l = parse_yolo(options, params);
}else if (lt == GAUSSIAN_YOLO) {
l = parse_gaussian_yolo(options, params);
}else if(lt == DETECTION){
l = parse_detection(options, params);
}else if(lt == SOFTMAX){

@ -242,16 +242,6 @@ static int entry_index(layer l, int batch, int location, int entry)
return batch*l.outputs + n*l.w*l.h*(4+l.classes+1) + entry*l.w*l.h + loc;
}
static box float_to_box_stride(float *f, int stride)
{
box b = { 0 };
b.x = f[0];
b.y = f[1 * stride];
b.w = f[2 * stride];
b.h = f[3 * stride];
return b;
}
void forward_yolo_layer(const layer l, network_state state)
{
int i, j, b, t, n;

Loading…
Cancel
Save