mirror of https://github.com/AlexeyAB/darknet.git
parent
bb7d69941c
commit
b3a2495298
13 changed files with 565 additions and 41 deletions
@ -0,0 +1,445 @@ |
||||
// Gaussian YOLOv3 implementation
|
||||
// Author: Jiwoong Choi
|
||||
// ICCV 2019 Paper: http://openaccess.thecvf.com/content_ICCV_2019/html/Choi_Gaussian_YOLOv3_An_Accurate_and_Fast_Object_Detector_Using_Localization_ICCV_2019_paper.html
|
||||
// arxiv.org: https://arxiv.org/abs/1904.04620v2
|
||||
// source code: https://github.com/jwchoi384/Gaussian_YOLOv3
|
||||
|
||||
#include "gaussian_yolo_layer.h" |
||||
#include "activations.h" |
||||
#include "blas.h" |
||||
#include "box.h" |
||||
#include "dark_cuda.h" |
||||
#include "utils.h" |
||||
|
||||
#include <stdio.h> |
||||
#include <assert.h> |
||||
#include <string.h> |
||||
#include <stdlib.h> |
||||
|
||||
#ifndef M_PI |
||||
#define M_PI 3.141592 |
||||
#endif |
||||
|
||||
layer make_gaussian_yolo_layer(int batch, int w, int h, int n, int total, int *mask, int classes) |
||||
{ |
||||
int i; |
||||
layer l = {0}; |
||||
l.type = GAUSSIAN_YOLO; |
||||
|
||||
l.n = n; |
||||
l.total = total; |
||||
l.batch = batch; |
||||
l.h = h; |
||||
l.w = w; |
||||
l.c = n*(classes + 8 + 1); |
||||
l.out_w = l.w; |
||||
l.out_h = l.h; |
||||
l.out_c = l.c; |
||||
l.classes = classes; |
||||
l.cost = calloc(1, sizeof(float)); |
||||
l.biases = calloc(total*2, sizeof(float)); |
||||
if(mask) l.mask = mask; |
||||
else{ |
||||
l.mask = calloc(n, sizeof(int)); |
||||
for(i = 0; i < n; ++i){ |
||||
l.mask[i] = i; |
||||
} |
||||
} |
||||
l.bias_updates = calloc(n*2, sizeof(float)); |
||||
l.outputs = h*w*n*(classes + 8 + 1); |
||||
l.inputs = l.outputs; |
||||
l.truths = 90*(4 + 1); |
||||
l.delta = calloc(batch*l.outputs, sizeof(float)); |
||||
l.output = calloc(batch*l.outputs, sizeof(float)); |
||||
for(i = 0; i < total*2; ++i){ |
||||
l.biases[i] = .5; |
||||
} |
||||
|
||||
l.forward = forward_gaussian_yolo_layer; |
||||
l.backward = backward_gaussian_yolo_layer; |
||||
#ifdef GPU |
||||
l.forward_gpu = forward_gaussian_yolo_layer_gpu; |
||||
l.backward_gpu = backward_gaussian_yolo_layer_gpu; |
||||
l.output_gpu = cuda_make_array(l.output, batch*l.outputs); |
||||
l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs); |
||||
#endif |
||||
|
||||
fprintf(stderr, "Gaussian_yolo\n"); |
||||
srand(0); |
||||
|
||||
return l; |
||||
} |
||||
|
||||
void resize_gaussian_yolo_layer(layer *l, int w, int h) |
||||
{ |
||||
l->w = w; |
||||
l->h = h; |
||||
|
||||
l->outputs = h*w*l->n*(l->classes + 8 + 1); |
||||
l->inputs = l->outputs; |
||||
|
||||
l->output = realloc(l->output, l->batch*l->outputs*sizeof(float)); |
||||
l->delta = realloc(l->delta, l->batch*l->outputs*sizeof(float)); |
||||
|
||||
#ifdef GPU |
||||
cuda_free(l->delta_gpu); |
||||
cuda_free(l->output_gpu); |
||||
|
||||
l->delta_gpu = cuda_make_array(l->delta, l->batch*l->outputs); |
||||
l->output_gpu = cuda_make_array(l->output, l->batch*l->outputs); |
||||
#endif |
||||
} |
||||
|
||||
box get_gaussian_yolo_box(float *x, float *biases, int n, int index, int i, int j, int lw, int lh, int w, int h, int stride) |
||||
{ |
||||
box b; |
||||
b.x = (i + x[index + 0*stride]) / lw; |
||||
b.y = (j + x[index + 2*stride]) / lh; |
||||
b.w = exp(x[index + 4*stride]) * biases[2*n] / w; |
||||
b.h = exp(x[index + 6*stride]) * biases[2*n+1] / h; |
||||
return b; |
||||
} |
||||
|
||||
float delta_gaussian_yolo_box(box truth, float *x, float *biases, int n, int index, int i, int j, int lw, int lh, int w, int h, float *delta, float scale, int stride) |
||||
{ |
||||
box pred = get_gaussian_yolo_box(x, biases, n, index, i, j, lw, lh, w, h, stride); |
||||
float iou = box_iou(pred, truth); |
||||
|
||||
float tx = (truth.x*lw - i); |
||||
float ty = (truth.y*lh - j); |
||||
float tw = log(truth.w*w / biases[2*n]); |
||||
float th = log(truth.h*h / biases[2*n + 1]); |
||||
|
||||
float sigma_const = 0.3; |
||||
float epsi = pow(10,-9); |
||||
|
||||
float in_exp_x = (tx - x[index + 0*stride])/x[index+1*stride]; |
||||
float in_exp_x_2 = pow(in_exp_x, 2); |
||||
float normal_dist_x = exp(in_exp_x_2*(-1./2.))/(sqrt(M_PI * 2.0)*(x[index+1*stride]+sigma_const)); |
||||
|
||||
float in_exp_y = (ty - x[index + 2*stride])/x[index+3*stride]; |
||||
float in_exp_y_2 = pow(in_exp_y, 2); |
||||
float normal_dist_y = exp(in_exp_y_2*(-1./2.))/(sqrt(M_PI * 2.0)*(x[index+3*stride]+sigma_const)); |
||||
|
||||
float in_exp_w = (tw - x[index + 4*stride])/x[index+5*stride]; |
||||
float in_exp_w_2 = pow(in_exp_w, 2); |
||||
float normal_dist_w = exp(in_exp_w_2*(-1./2.))/(sqrt(M_PI * 2.0)*(x[index+5*stride]+sigma_const)); |
||||
|
||||
float in_exp_h = (th - x[index + 6*stride])/x[index+7*stride]; |
||||
float in_exp_h_2 = pow(in_exp_h, 2); |
||||
float normal_dist_h = exp(in_exp_h_2*(-1./2.))/(sqrt(M_PI * 2.0)*(x[index+7*stride]+sigma_const)); |
||||
|
||||
float temp_x = (1./2.) * 1./(normal_dist_x+epsi) * normal_dist_x * scale; |
||||
float temp_y = (1./2.) * 1./(normal_dist_y+epsi) * normal_dist_y * scale; |
||||
float temp_w = (1./2.) * 1./(normal_dist_w+epsi) * normal_dist_w * scale; |
||||
float temp_h = (1./2.) * 1./(normal_dist_h+epsi) * normal_dist_h * scale; |
||||
|
||||
delta[index + 0*stride] = temp_x * in_exp_x * (1./x[index+1*stride]); |
||||
delta[index + 2*stride] = temp_y * in_exp_y * (1./x[index+3*stride]); |
||||
delta[index + 4*stride] = temp_w * in_exp_w * (1./x[index+5*stride]); |
||||
delta[index + 6*stride] = temp_h * in_exp_h * (1./x[index+7*stride]); |
||||
|
||||
delta[index + 1*stride] = temp_x * (in_exp_x_2/x[index+1*stride] - 1./(x[index+1*stride]+sigma_const)); |
||||
delta[index + 3*stride] = temp_y * (in_exp_y_2/x[index+3*stride] - 1./(x[index+3*stride]+sigma_const)); |
||||
delta[index + 5*stride] = temp_w * (in_exp_w_2/x[index+5*stride] - 1./(x[index+5*stride]+sigma_const)); |
||||
delta[index + 7*stride] = temp_h * (in_exp_h_2/x[index+7*stride] - 1./(x[index+7*stride]+sigma_const)); |
||||
return iou; |
||||
} |
||||
|
||||
|
||||
void delta_gaussian_yolo_class(float *output, float *delta, int index, int class, int classes, int stride, float *avg_cat) |
||||
{ |
||||
int n; |
||||
if (delta[index]){ |
||||
delta[index + stride*class] = 1 - output[index + stride*class]; |
||||
if(avg_cat) *avg_cat += output[index + stride*class]; |
||||
return; |
||||
} |
||||
for(n = 0; n < classes; ++n){ |
||||
delta[index + stride*n] = ((n == class)?1 : 0) - output[index + stride*n]; |
||||
if(n == class && avg_cat) *avg_cat += output[index + stride*n]; |
||||
} |
||||
} |
||||
|
||||
static int entry_gaussian_index(layer l, int batch, int location, int entry) |
||||
{ |
||||
int n = location / (l.w*l.h); |
||||
int loc = location % (l.w*l.h); |
||||
return batch*l.outputs + n*l.w*l.h*(8+l.classes+1) + entry*l.w*l.h + loc; |
||||
} |
||||
|
||||
void forward_gaussian_yolo_layer(const layer l, network net) |
||||
{ |
||||
int i,j,b,t,n; |
||||
memcpy(l.output, net.input, l.outputs*l.batch*sizeof(float)); |
||||
|
||||
#ifndef GPU |
||||
for (b = 0; b < l.batch; ++b){ |
||||
for(n = 0; n < l.n; ++n){ |
||||
// x : mu, sigma
|
||||
int index = entry_gaussian_index(l, b, n*l.w*l.h, 0); |
||||
activate_array(l.output + index, 2*l.w*l.h, LOGISTIC); |
||||
// y : mu, sigma
|
||||
index = entry_gaussian_index(l, b, n*l.w*l.h, 2); |
||||
activate_array(l.output + index, 2*l.w*l.h, LOGISTIC); |
||||
// w : sigma
|
||||
index = entry_gaussian_index(l, b, n*l.w*l.h, 5); |
||||
activate_array(l.output + index, l.w*l.h, LOGISTIC); |
||||
// h : sigma
|
||||
index = entry_gaussian_index(l, b, n*l.w*l.h, 7); |
||||
activate_array(l.output + index, l.w*l.h, LOGISTIC); |
||||
// objectness & class
|
||||
index = entry_gaussian_index(l, b, n*l.w*l.h, 8); |
||||
activate_array(l.output + index, (1+l.classes)*l.w*l.h, LOGISTIC); |
||||
} |
||||
} |
||||
#endif |
||||
|
||||
memset(l.delta, 0, l.outputs * l.batch * sizeof(float)); |
||||
if(!net.train) return; |
||||
float avg_iou = 0; |
||||
float recall = 0; |
||||
float recall75 = 0; |
||||
float avg_cat = 0; |
||||
float avg_obj = 0; |
||||
float avg_anyobj = 0; |
||||
int count = 0; |
||||
int class_count = 0; |
||||
*(l.cost) = 0; |
||||
for (b = 0; b < l.batch; ++b) { |
||||
for (j = 0; j < l.h; ++j) { |
||||
for (i = 0; i < l.w; ++i) { |
||||
for (n = 0; n < l.n; ++n) { |
||||
int box_index = entry_gaussian_index(l, b, n*l.w*l.h + j*l.w + i, 0); |
||||
box pred = get_gaussian_yolo_box(l.output, l.biases, l.mask[n], box_index, i, j, l.w, l.h, net.w, net.h, l.w*l.h); |
||||
float best_iou = 0; |
||||
int best_t = 0; |
||||
for(t = 0; t < l.max_boxes; ++t){ |
||||
box truth = float_to_box_stride(net.truth + t*(4 + 1) + b*l.truths, 1); |
||||
if(!truth.x) break; |
||||
float iou = box_iou(pred, truth); |
||||
if (iou > best_iou) { |
||||
best_iou = iou; |
||||
best_t = t; |
||||
} |
||||
} |
||||
int obj_index = entry_gaussian_index(l, b, n*l.w*l.h + j*l.w + i, 8); |
||||
avg_anyobj += l.output[obj_index]; |
||||
l.delta[obj_index] = 0 - l.output[obj_index]; |
||||
if (best_iou > l.ignore_thresh) { |
||||
l.delta[obj_index] = 0; |
||||
} |
||||
if (best_iou > l.truth_thresh) { |
||||
l.delta[obj_index] = 1 - l.output[obj_index]; |
||||
|
||||
int class = net.truth[best_t*(4 + 1) + b*l.truths + 4]; |
||||
if (l.map) class = l.map[class]; |
||||
int class_index = entry_gaussian_index(l, b, n*l.w*l.h + j*l.w + i, 9); |
||||
delta_gaussian_yolo_class(l.output, l.delta, class_index, class, l.classes, l.w*l.h, 0); |
||||
box truth = float_to_box_stride(net.truth + best_t*(4 + 1) + b*l.truths, 1); |
||||
delta_gaussian_yolo_box(truth, l.output, l.biases, l.mask[n], box_index, i, j, l.w, l.h, net.w, net.h, l.delta, (2-truth.w*truth.h), l.w*l.h); |
||||
} |
||||
} |
||||
} |
||||
} |
||||
for(t = 0; t < l.max_boxes; ++t){ |
||||
box truth = float_to_box_stride(net.truth + t*(4 + 1) + b*l.truths, 1); |
||||
|
||||
if(!truth.x) break; |
||||
float best_iou = 0; |
||||
int best_n = 0; |
||||
i = (truth.x * l.w); |
||||
j = (truth.y * l.h); |
||||
box truth_shift = truth; |
||||
truth_shift.x = truth_shift.y = 0; |
||||
for(n = 0; n < l.total; ++n){ |
||||
box pred = {0}; |
||||
pred.w = l.biases[2*n]/net.w; |
||||
pred.h = l.biases[2*n+1]/net.h; |
||||
float iou = box_iou(pred, truth_shift); |
||||
if (iou > best_iou){ |
||||
best_iou = iou; |
||||
best_n = n; |
||||
} |
||||
} |
||||
|
||||
int mask_n = int_index(l.mask, best_n, l.n); |
||||
if(mask_n >= 0){ |
||||
int box_index = entry_gaussian_index(l, b, mask_n*l.w*l.h + j*l.w + i, 0); |
||||
float iou = delta_gaussian_yolo_box(truth, l.output, l.biases, best_n, box_index, i, j, l.w, l.h, net.w, net.h, l.delta, (2-truth.w*truth.h), l.w*l.h); |
||||
|
||||
int obj_index = entry_gaussian_index(l, b, mask_n*l.w*l.h + j*l.w + i, 8); |
||||
avg_obj += l.output[obj_index]; |
||||
l.delta[obj_index] = 1 - l.output[obj_index]; |
||||
|
||||
int class = net.truth[t*(4 + 1) + b*l.truths + 4]; |
||||
if (l.map) class = l.map[class]; |
||||
int class_index = entry_gaussian_index(l, b, mask_n*l.w*l.h + j*l.w + i, 9); |
||||
delta_gaussian_yolo_class(l.output, l.delta, class_index, class, l.classes, l.w*l.h, &avg_cat); |
||||
|
||||
++count; |
||||
++class_count; |
||||
if(iou > .5) recall += 1; |
||||
if(iou > .75) recall75 += 1; |
||||
avg_iou += iou; |
||||
} |
||||
} |
||||
} |
||||
*(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2); |
||||
printf("Region %d Avg IOU: %f, Class: %f, Obj: %f, No Obj: %f, .5R: %f, .75R: %f, count: %d\n", net.index, avg_iou/count, avg_cat/class_count, avg_obj/count, avg_anyobj/(l.w*l.h*l.n*l.batch), recall/count, recall75/count, count); |
||||
} |
||||
|
||||
void backward_gaussian_yolo_layer(const layer l, network net) |
||||
{ |
||||
axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, net.delta, 1); |
||||
} |
||||
|
||||
void correct_gaussian_yolo_boxes(detection *dets, int n, int w, int h, int netw, int neth, int relative) |
||||
{ |
||||
int i; |
||||
int new_w=0; |
||||
int new_h=0; |
||||
if (((float)netw/w) < ((float)neth/h)) { |
||||
new_w = netw; |
||||
new_h = (h * netw)/w; |
||||
} else { |
||||
new_h = neth; |
||||
new_w = (w * neth)/h; |
||||
} |
||||
for (i = 0; i < n; ++i){ |
||||
box b = dets[i].bbox; |
||||
b.x = (b.x - (netw - new_w)/2./netw) / ((float)new_w/netw); |
||||
b.y = (b.y - (neth - new_h)/2./neth) / ((float)new_h/neth); |
||||
b.w *= (float)netw/new_w; |
||||
b.h *= (float)neth/new_h; |
||||
if(!relative){ |
||||
b.x *= w; |
||||
b.w *= w; |
||||
b.y *= h; |
||||
b.h *= h; |
||||
} |
||||
dets[i].bbox = b; |
||||
} |
||||
} |
||||
|
||||
int gaussian_yolo_num_detections(layer l, float thresh) |
||||
{ |
||||
int i, n; |
||||
int count = 0; |
||||
for (i = 0; i < l.w*l.h; ++i){ |
||||
for(n = 0; n < l.n; ++n){ |
||||
int obj_index = entry_gaussian_index(l, 0, n*l.w*l.h + i, 8); |
||||
if(l.output[obj_index] > thresh){ |
||||
++count; |
||||
} |
||||
} |
||||
} |
||||
return count; |
||||
} |
||||
|
||||
/*
|
||||
void avg_flipped_gaussian_yolo(layer l) |
||||
{ |
||||
int i,j,n,z; |
||||
float *flip = l.output + l.outputs; |
||||
for (j = 0; j < l.h; ++j) { |
||||
for (i = 0; i < l.w/2; ++i) { |
||||
for (n = 0; n < l.n; ++n) { |
||||
for(z = 0; z < l.classes + 8 + 1; ++z){ |
||||
int i1 = z*l.w*l.h*l.n + n*l.w*l.h + j*l.w + i; |
||||
int i2 = z*l.w*l.h*l.n + n*l.w*l.h + j*l.w + (l.w - i - 1); |
||||
float swap = flip[i1]; |
||||
flip[i1] = flip[i2]; |
||||
flip[i2] = swap; |
||||
if(z == 0){ |
||||
flip[i1] = -flip[i1]; |
||||
flip[i2] = -flip[i2]; |
||||
} |
||||
} |
||||
} |
||||
} |
||||
} |
||||
for(i = 0; i < l.outputs; ++i){ |
||||
l.output[i] = (l.output[i] + flip[i])/2.; |
||||
} |
||||
} |
||||
*/ |
||||
|
||||
int get_gaussian_yolo_detections(layer l, int w, int h, int netw, int neth, float thresh, int *map, int relative, detection *dets) |
||||
{ |
||||
int i,j,n; |
||||
float *predictions = l.output; |
||||
//if (l.batch == 2) avg_flipped_gaussian_yolo(l);
|
||||
int count = 0; |
||||
for (i = 0; i < l.w*l.h; ++i){ |
||||
int row = i / l.w; |
||||
int col = i % l.w; |
||||
for(n = 0; n < l.n; ++n){ |
||||
int obj_index = entry_gaussian_index(l, 0, n*l.w*l.h + i, 8); |
||||
float objectness = predictions[obj_index]; |
||||
if(objectness <= thresh) continue; |
||||
int box_index = entry_gaussian_index(l, 0, n*l.w*l.h + i, 0); |
||||
dets[count].bbox = get_gaussian_yolo_box(predictions, l.biases, l.mask[n], box_index, col, row, l.w, l.h, netw, neth, l.w*l.h); |
||||
dets[count].objectness = objectness; |
||||
dets[count].classes = l.classes; |
||||
|
||||
dets[count].uc[0] = predictions[entry_gaussian_index(l, 0, n*l.w*l.h + i, 1)]; // tx uncertainty
|
||||
dets[count].uc[1] = predictions[entry_gaussian_index(l, 0, n*l.w*l.h + i, 3)]; // ty uncertainty
|
||||
dets[count].uc[2] = predictions[entry_gaussian_index(l, 0, n*l.w*l.h + i, 5)]; // tw uncertainty
|
||||
dets[count].uc[3] = predictions[entry_gaussian_index(l, 0, n*l.w*l.h + i, 7)]; // th uncertainty
|
||||
|
||||
for(j = 0; j < l.classes; ++j){ |
||||
int class_index = entry_gaussian_index(l, 0, n*l.w*l.h + i, 9 + j); |
||||
float uc_aver = (dets[count].uc[0] + dets[count].uc[1] + dets[count].uc[2] + dets[count].uc[3])/4.0; |
||||
float prob = objectness*predictions[class_index]*(1.0-uc_aver); |
||||
dets[count].prob[j] = (prob > thresh) ? prob : 0; |
||||
} |
||||
++count; |
||||
} |
||||
} |
||||
correct_gaussian_yolo_boxes(dets, count, w, h, netw, neth, relative); |
||||
return count; |
||||
} |
||||
|
||||
#ifdef GPU |
||||
|
||||
void forward_gaussian_yolo_layer_gpu(const layer l, network net) |
||||
{ |
||||
copy_ongpu(l.batch*l.inputs, net.input_gpu, 1, l.output_gpu, 1); |
||||
int b, n; |
||||
for (b = 0; b < l.batch; ++b) |
||||
{ |
||||
for(n = 0; n < l.n; ++n) |
||||
{ |
||||
// x : mu, sigma
|
||||
int index = entry_gaussian_index(l, b, n*l.w*l.h, 0); |
||||
activate_array_ongpu(l.output_gpu + index, 2*l.w*l.h, LOGISTIC); |
||||
// y : mu, sigma
|
||||
index = entry_gaussian_index(l, b, n*l.w*l.h, 2); |
||||
activate_array_ongpu(l.output_gpu + index, 2*l.w*l.h, LOGISTIC); |
||||
// w : sigma
|
||||
index = entry_gaussian_index(l, b, n*l.w*l.h, 5); |
||||
activate_array_ongpu(l.output_gpu + index, l.w*l.h, LOGISTIC); |
||||
// h : sigma
|
||||
index = entry_gaussian_index(l, b, n*l.w*l.h, 7); |
||||
activate_array_ongpu(l.output_gpu + index, l.w*l.h, LOGISTIC); |
||||
// objectness & class
|
||||
index = entry_gaussian_index(l, b, n*l.w*l.h, 8); |
||||
activate_array_ongpu(l.output_gpu + index, (1+l.classes)*l.w*l.h, LOGISTIC); |
||||
} |
||||
} |
||||
if(!net.train || l.onlyforward){ |
||||
cuda_pull_array(l.output_gpu, l.output, l.batch*l.outputs); |
||||
return; |
||||
} |
||||
|
||||
cuda_pull_array(l.output_gpu, net.input, l.batch*l.inputs); |
||||
forward_gaussian_yolo_layer(l, net); |
||||
cuda_push_array(l.delta_gpu, l.delta, l.batch*l.outputs); |
||||
} |
||||
|
||||
void backward_gaussian_yolo_layer_gpu(const layer l, network net) |
||||
{ |
||||
axpy_ongpu(l.batch*l.inputs, 1, l.delta_gpu, 1, net.delta_gpu, 1); |
||||
} |
||||
#endif |
@ -0,0 +1,20 @@ |
||||
//Gaussian YOLOv3 implementation
|
||||
#ifndef GAUSSIAN_YOLO_LAYER_H |
||||
#define GAUSSIAN_YOLO_LAYER_H |
||||
|
||||
#include "darknet.h" |
||||
#include "layer.h" |
||||
#include "network.h" |
||||
|
||||
layer make_gaussian_yolo_layer(int batch, int w, int h, int n, int total, int *mask, int classes); |
||||
void forward_gaussian_yolo_layer(const layer l, network net); |
||||
void backward_gaussian_yolo_layer(const layer l, network net); |
||||
void resize_gaussian_yolo_layer(layer *l, int w, int h); |
||||
int gaussian_yolo_num_detections(layer l, float thresh); |
||||
|
||||
#ifdef GPU |
||||
void forward_gaussian_yolo_layer_gpu(const layer l, network net); |
||||
void backward_gaussian_yolo_layer_gpu(layer l, network net); |
||||
#endif |
||||
|
||||
#endif |
Loading…
Reference in new issue