Update Readme.md

pull/5739/head
Alexey 5 years ago committed by GitHub
parent 4098e4882c
commit b44592c25a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 17
      README.md

@ -26,7 +26,7 @@ More details: http://pjreddie.com/darknet/yolo/
* [Using cmake](#how-to-compile-on-linux-using-cmake)
* [Using make](#how-to-compile-on-linux-using-make)
3. How to compile on Windows
* [Using CMake-GUI](#how-to-compile-on-windows-using-cmake-gui)
* [Using CMake-GUI](#how-to-compile-on-windows-using-cmake)
* [Using vcpkg](#how-to-compile-on-windows-using-vcpkg)
* [Legacy way](#how-to-compile-on-windows-legacy-way)
4. [Training and Evaluation of speed and accuracy on MS COCO](https://github.com/AlexeyAB/darknet/wiki#training-and-evaluation-of-speed-and-accuracy-on-ms-coco)
@ -140,11 +140,14 @@ You can get cfg-files by path: `darknet/cfg/`
#### Yolo v3 in other frameworks
* **TensorFlow:** convert `yolov3.weights`/`cfg` files to `yolov3.ckpt`/`pb/meta`: by using [mystic123](https://github.com/mystic123/tensorflow-yolo-v3) or [jinyu121](https://github.com/jinyu121/DW2TF) projects, and [TensorFlow-lite](https://www.tensorflow.org/lite/guide/get_started#2_convert_the_model_format)
* **Intel OpenVINO 2019 R1:** (Myriad X / USB Neural Compute Stick / Arria FPGA): read this [manual](https://software.intel.com/en-us/articles/OpenVINO-Using-TensorFlow#converting-a-darknet-yolo-model)
* **TensorFlow:** YOLOv4 on TensorFlow 2.0 / TFlite / Andriod: https://github.com/hunglc007/tensorflow-yolov4-tflite
For YOLOv3 - convert `yolov3.weights`/`cfg` files to `yolov3.ckpt`/`pb/meta`: by using [mystic123](https://github.com/mystic123/tensorflow-yolo-v3) project, and [TensorFlow-lite](https://www.tensorflow.org/lite/guide/get_started#2_convert_the_model_format)
* **OpenCV-dnn** the fastest implementation for CPU (x86/ARM-Android), OpenCV can be compiled with [OpenVINO-backend](https://github.com/opencv/opencv/wiki/Intel's-Deep-Learning-Inference-Engine-backend) for running on (Myriad X / USB Neural Compute Stick / Arria FPGA), use `yolov3.weights`/`cfg` with: [C++ example](https://github.com/opencv/opencv/blob/8c25a8eb7b10fb50cda323ee6bec68aa1a9ce43c/samples/dnn/object_detection.cpp#L192-L221) or [Python example](https://github.com/opencv/opencv/blob/8c25a8eb7b10fb50cda323ee6bec68aa1a9ce43c/samples/dnn/object_detection.py#L129-L150)
* **Intel OpenVINO 2019 R1:** (Myriad X / USB Neural Compute Stick / Arria FPGA): read this [manual](https://software.intel.com/en-us/articles/OpenVINO-Using-TensorFlow#converting-a-darknet-yolo-model)
* **PyTorch > ONNX > CoreML > iOS** how to convert cfg/weights-files to pt-file: [ultralytics/yolov3](https://github.com/ultralytics/yolov3#darknet-conversion) and [iOS App](https://itunes.apple.com/app/id1452689527)
* **TensorRT** for YOLOv3 (-70% faster inference): [Yolo is natively supported in DeepStream 4.0](https://news.developer.nvidia.com/deepstream-sdk-4-now-available/) read [PDF](https://docs.nvidia.com/metropolis/deepstream/Custom_YOLO_Model_in_the_DeepStream_YOLO_App.pdf). [wang-xinyu/tensorrtx](https://github.com/wang-xinyu/tensorrtx) implemented yolov3-spp, yolov4, etc.
* **TensorRT** YOLOv4 on TensorRT+tkDNN: https://github.com/ceccocats/tkDNN
For YOLOv3 (-70% faster inference): [Yolo is natively supported in DeepStream 4.0](https://news.developer.nvidia.com/deepstream-sdk-4-now-available/) read [PDF](https://docs.nvidia.com/metropolis/deepstream/Custom_YOLO_Model_in_the_DeepStream_YOLO_App.pdf). [wang-xinyu/tensorrtx](https://github.com/wang-xinyu/tensorrtx) implemented yolov3-spp, yolov4, etc.
* **TVM** - compilation of deep learning models (Keras, MXNet, PyTorch, Tensorflow, CoreML, DarkNet) into minimum deployable modules on diverse hardware backends (CPUs, GPUs, FPGA, and specialized accelerators): https://tvm.ai/about
* **OpenDataCam** - It detects, tracks and counts moving objects by using Yolo: https://github.com/opendatacam/opendatacam#-hardware-pre-requisite
* **Netron** - Visualizer for neural networks: https://github.com/lutzroeder/netron
@ -251,7 +254,7 @@ Open a bash terminal inside the cloned repository and launch:
### How to compile on Linux (using `make`)
Just do `make` in the darknet directory.
Just do `make` in the darknet directory. (You can try to compile and run it on Google Colab in cloud [link](https://colab.research.google.com/drive/12QusaaRj_lUwCGDvQNfICpa7kA7_a2dE) (press «Open in Playground» button at the top-left corner) and watch the video [link](https://www.youtube.com/watch?v=mKAEGSxwOAY) )
Before make, you can set such options in the `Makefile`: [link](https://github.com/AlexeyAB/darknet/blob/9c1b9a2cf6363546c152251be578a21f3c3caec6/Makefile#L1)
* `GPU=1` to build with CUDA to accelerate by using GPU (CUDA should be in `/usr/local/cuda`)
@ -270,8 +273,8 @@ To run Darknet on Linux use examples from this article, just use `./darknet` ins
### How to compile on Windows (using `CMake`)
This is the recommended approach to build Darknet on Windows if you have already
installed Visual Studio 2015/2017/2019, CUDA > 10.0, cuDNN > 7.0, and
OpenCV > 2.4.
installed Visual Studio 2015/2017/2019, CUDA >= 10.0, cuDNN >= 7.0, and
OpenCV >= 2.4.
Open a Powershell terminal inside the cloned repository and launch:

Loading…
Cancel
Save