|
|
|
@ -2,15 +2,36 @@ |
|
|
|
|
#include "utils.h" |
|
|
|
|
#include "mini_blas.h" |
|
|
|
|
#include <math.h> |
|
|
|
|
#include <string.h> |
|
|
|
|
#include <stdlib.h> |
|
|
|
|
#include <stdio.h> |
|
|
|
|
|
|
|
|
|
cost_layer *make_cost_layer(int batch, int inputs) |
|
|
|
|
COST_TYPE get_cost_type(char *s) |
|
|
|
|
{ |
|
|
|
|
if (strcmp(s, "sse")==0) return SSE; |
|
|
|
|
if (strcmp(s, "detection")==0) return DETECTION; |
|
|
|
|
fprintf(stderr, "Couldn't find activation function %s, going with SSE\n", s); |
|
|
|
|
return SSE; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
char *get_cost_string(COST_TYPE a) |
|
|
|
|
{ |
|
|
|
|
switch(a){ |
|
|
|
|
case SSE: |
|
|
|
|
return "sse"; |
|
|
|
|
case DETECTION: |
|
|
|
|
return "detection"; |
|
|
|
|
} |
|
|
|
|
return "sse"; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
cost_layer *make_cost_layer(int batch, int inputs, COST_TYPE type) |
|
|
|
|
{ |
|
|
|
|
fprintf(stderr, "Cost Layer: %d inputs\n", inputs); |
|
|
|
|
cost_layer *layer = calloc(1, sizeof(cost_layer)); |
|
|
|
|
layer->batch = batch; |
|
|
|
|
layer->inputs = inputs; |
|
|
|
|
layer->type = type; |
|
|
|
|
layer->delta = calloc(inputs*batch, sizeof(float)); |
|
|
|
|
layer->output = calloc(1, sizeof(float)); |
|
|
|
|
#ifdef GPU |
|
|
|
@ -24,6 +45,12 @@ void forward_cost_layer(cost_layer layer, float *input, float *truth) |
|
|
|
|
if (!truth) return; |
|
|
|
|
copy_cpu(layer.batch*layer.inputs, truth, 1, layer.delta, 1); |
|
|
|
|
axpy_cpu(layer.batch*layer.inputs, -1, input, 1, layer.delta, 1); |
|
|
|
|
if(layer.type == DETECTION){ |
|
|
|
|
int i; |
|
|
|
|
for(i = 0; i < layer.batch*layer.inputs; ++i){ |
|
|
|
|
if((i%5) && !truth[(i/5)*5]) layer.delta[i] = 0; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
*(layer.output) = dot_cpu(layer.batch*layer.inputs, layer.delta, 1, layer.delta, 1); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -33,6 +60,38 @@ void backward_cost_layer(const cost_layer layer, float *input, float *delta) |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#ifdef GPU |
|
|
|
|
|
|
|
|
|
cl_kernel get_mask_kernel() |
|
|
|
|
{ |
|
|
|
|
static int init = 0; |
|
|
|
|
static cl_kernel kernel; |
|
|
|
|
if(!init){ |
|
|
|
|
kernel = get_kernel("src/axpy.cl", "mask", 0); |
|
|
|
|
init = 1; |
|
|
|
|
} |
|
|
|
|
return kernel; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void mask_ongpu(int n, cl_mem x, cl_mem mask, int mod) |
|
|
|
|
{ |
|
|
|
|
cl_setup(); |
|
|
|
|
cl_kernel kernel = get_mask_kernel(); |
|
|
|
|
cl_command_queue queue = cl.queue; |
|
|
|
|
|
|
|
|
|
cl_uint i = 0; |
|
|
|
|
cl.error = clSetKernelArg(kernel, i++, sizeof(n), (void*) &n); |
|
|
|
|
cl.error = clSetKernelArg(kernel, i++, sizeof(x), (void*) &x); |
|
|
|
|
cl.error = clSetKernelArg(kernel, i++, sizeof(mask), (void*) &mask); |
|
|
|
|
cl.error = clSetKernelArg(kernel, i++, sizeof(mod), (void*) &mod); |
|
|
|
|
check_error(cl); |
|
|
|
|
|
|
|
|
|
const size_t global_size[] = {n}; |
|
|
|
|
|
|
|
|
|
cl.error = clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0); |
|
|
|
|
check_error(cl); |
|
|
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void forward_cost_layer_gpu(cost_layer layer, cl_mem input, cl_mem truth) |
|
|
|
|
{ |
|
|
|
|
if (!truth) return; |
|
|
|
@ -40,6 +99,10 @@ void forward_cost_layer_gpu(cost_layer layer, cl_mem input, cl_mem truth) |
|
|
|
|
copy_ongpu(layer.batch*layer.inputs, truth, 1, layer.delta_cl, 1); |
|
|
|
|
axpy_ongpu(layer.batch*layer.inputs, -1, input, 1, layer.delta_cl, 1); |
|
|
|
|
|
|
|
|
|
if(layer.type==DETECTION){ |
|
|
|
|
mask_ongpu(layer.inputs*layer.batch, layer.delta_cl, truth, 5); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
cl_read_array(layer.delta_cl, layer.delta, layer.batch*layer.inputs); |
|
|
|
|
*(layer.output) = dot_cpu(layer.batch*layer.inputs, layer.delta, 1, layer.delta, 1); |
|
|
|
|
//printf("%f\n", *layer.output);
|
|
|
|
|