Different checks for AVX and FMA

pull/1385/merge
AlexeyAB 7 years ago
parent fa7bfe3412
commit bd8a5c3eb1
  1. 128
      src/gemm.c

@ -306,12 +306,6 @@ void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED,
#if (defined(__AVX__) && defined(__x86_64__)) || defined(_WIN64)
#define OSXSAVEFlag (1UL<<27)
#define AVXFlag ((1UL<<28)|OSXSAVEFlag)
#define FMAFlag ((1UL<<12)|AVXFlag|OSXSAVEFlag)
#define CLMULFlag ((1UL<< 1)|AVXFlag|OSXSAVEFlag)
#define VAESFlag ((1UL<<25)|AVXFlag|OSXSAVEFlag)
#ifdef _WIN64
#include <intrin.h>
#include <ammintrin.h>
@ -326,7 +320,6 @@ static inline __int32 _mm256_extract_epi64(__m256i a, const int index) {
static inline __int32 _mm256_extract_epi32(__m256i a, const int index) {
return a.m256i_i32[index];
}
#endif
static inline float _castu32_f32(uint32_t a) {
@ -368,35 +361,122 @@ void asm_cpuid(uint32_t* abcd, uint32_t eax)
abcd[2] = ecx;
abcd[3] = edx;
}
#endif
int simd_detect_x86(unsigned int idFeature)
{
uint32_t regs[4]; // EAX, EBX, ECX, EDX;
#ifdef _WIN32
__cpuid(regs, 0);
if (regs[0] > 1U) __cpuid(regs, 1);
// Windows
#define cpuid(info, x) __cpuidex(info, x, 0)
#else
__get_cpuid(0, &regs[0], &regs[1], &regs[2], &regs[3]);
if(regs[0] > 1U) __get_cpuid(1, &regs[0], &regs[1], &regs[2], &regs[3]);
// GCC Intrinsics
#include <cpuid.h>
void cpuid(int info[4], int InfoType) {
__cpuid_count(InfoType, 0, info[0], info[1], info[2], info[3]);
}
#endif
if ((regs[2] & idFeature) != idFeature)
return 0;
return 1;
}
int is_fma_avx() {
// Misc.
static int HW_MMX, HW_x64, HW_RDRAND, HW_BMI1, HW_BMI2, HW_ADX, HW_PREFETCHWT1;
static int HW_ABM; // Advanced Bit Manipulation
// SIMD: 128-bit
static int HW_SSE, HW_SSE2, HW_SSE3, HW_SSSE3, HW_SSE41, HW_SSE42, HW_SSE4a, HW_AES, HW_SHA;
// SIMD: 256-bit
static int HW_AVX, HW_XOP, HW_FMA3, HW_FMA4, HW_AVX2;
// SIMD: 512-bit
static int HW_AVX512F; // AVX512 Foundation
static int HW_AVX512CD; // AVX512 Conflict Detection
static int HW_AVX512PF; // AVX512 Prefetch
static int HW_AVX512ER; // AVX512 Exponential + Reciprocal
static int HW_AVX512VL; // AVX512 Vector Length Extensions
static int HW_AVX512BW; // AVX512 Byte + Word
static int HW_AVX512DQ; // AVX512 Doubleword + Quadword
static int HW_AVX512IFMA; // AVX512 Integer 52-bit Fused Multiply-Add
static int HW_AVX512VBMI; // AVX512 Vector Byte Manipulation Instructions
// https://stackoverflow.com/questions/6121792/how-to-check-if-a-cpu-supports-the-sse3-instruction-set
void check_cpu_features(void) {
int info[4];
cpuid(info, 0);
int nIds = info[0];
cpuid(info, 0x80000000);
unsigned nExIds = info[0];
// Detect Features
if (nIds >= 0x00000001) {
cpuid(info, 0x00000001);
HW_MMX = (info[3] & ((int)1 << 23)) != 0;
HW_SSE = (info[3] & ((int)1 << 25)) != 0;
HW_SSE2 = (info[3] & ((int)1 << 26)) != 0;
HW_SSE3 = (info[2] & ((int)1 << 0)) != 0;
HW_SSSE3 = (info[2] & ((int)1 << 9)) != 0;
HW_SSE41 = (info[2] & ((int)1 << 19)) != 0;
HW_SSE42 = (info[2] & ((int)1 << 20)) != 0;
HW_AES = (info[2] & ((int)1 << 25)) != 0;
HW_AVX = (info[2] & ((int)1 << 28)) != 0;
HW_FMA3 = (info[2] & ((int)1 << 12)) != 0;
HW_RDRAND = (info[2] & ((int)1 << 30)) != 0;
}
if (nIds >= 0x00000007) {
cpuid(info, 0x00000007);
HW_AVX2 = (info[1] & ((int)1 << 5)) != 0;
HW_BMI1 = (info[1] & ((int)1 << 3)) != 0;
HW_BMI2 = (info[1] & ((int)1 << 8)) != 0;
HW_ADX = (info[1] & ((int)1 << 19)) != 0;
HW_SHA = (info[1] & ((int)1 << 29)) != 0;
HW_PREFETCHWT1 = (info[2] & ((int)1 << 0)) != 0;
HW_AVX512F = (info[1] & ((int)1 << 16)) != 0;
HW_AVX512CD = (info[1] & ((int)1 << 28)) != 0;
HW_AVX512PF = (info[1] & ((int)1 << 26)) != 0;
HW_AVX512ER = (info[1] & ((int)1 << 27)) != 0;
HW_AVX512VL = (info[1] & ((int)1 << 31)) != 0;
HW_AVX512BW = (info[1] & ((int)1 << 30)) != 0;
HW_AVX512DQ = (info[1] & ((int)1 << 17)) != 0;
HW_AVX512IFMA = (info[1] & ((int)1 << 21)) != 0;
HW_AVX512VBMI = (info[2] & ((int)1 << 1)) != 0;
}
if (nExIds >= 0x80000001) {
cpuid(info, 0x80000001);
HW_x64 = (info[3] & ((int)1 << 29)) != 0;
HW_ABM = (info[2] & ((int)1 << 5)) != 0;
HW_SSE4a = (info[2] & ((int)1 << 6)) != 0;
HW_FMA4 = (info[2] & ((int)1 << 16)) != 0;
HW_XOP = (info[2] & ((int)1 << 11)) != 0;
}
}
int is_avx() {
static int result = -1;
if (result == -1) {
result = simd_detect_x86(AVXFlag);
check_cpu_features();
result = HW_AVX;
if (result == 1) printf(" Used AVX \n");
else printf(" Not used AVX \n");
}
return result;
}
int is_fma_avx2() {
static int result = -1;
if (result == -1) {
check_cpu_features();
result = HW_FMA3 && HW_AVX2;
if (result == 1) printf(" Used FMA & AVX2 \n");
else printf(" Not used FMA & AVX2 \n");
}
return result;
}
// https://software.intel.com/sites/landingpage/IntrinsicsGuide
void gemm_nn(int M, int N, int K, float ALPHA,
float *A, int lda,
@ -404,7 +484,7 @@ void gemm_nn(int M, int N, int K, float ALPHA,
float *C, int ldc)
{
int i, j, k;
if (is_fma_avx() == 1) { // AVX
if (is_avx() == 1) { // AVX
for (i = 0; i < M; ++i) {
for (k = 0; k < K; ++k) {
float A_PART = ALPHA*A[i*lda + k];
@ -878,7 +958,7 @@ void im2col_cpu_custom(float* data_im,
int channels_col = channels * ksize * ksize;
// optimized version
if (height_col == height && width_col == width && stride == 1 && pad == 1 && is_fma_avx())
if (height_col == height && width_col == width && stride == 1 && pad == 1 && is_fma_avx2())
{
#pragma omp parallel for
for (c = 0; c < channels_col; ++c) {
@ -987,7 +1067,7 @@ void activate_array_cpu_custom(float *x, const int n, const ACTIVATION a)
{}
else if (a == LEAKY)
{
if (is_fma_avx()) {
if (is_fma_avx2()) {
__m256i all256_sing1 = _mm256_set_epi32(0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000);
__m256 all256_01 = _mm256_set1_ps(0.1F);

Loading…
Cancel
Save