|
|
|
@ -43,6 +43,7 @@ connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVA |
|
|
|
|
|
|
|
|
|
for(i = 0; i < outputs; ++i){ |
|
|
|
|
layer->biases[i] = scale; |
|
|
|
|
// layer->biases[i] = 1;
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#ifdef GPU |
|
|
|
@ -113,9 +114,10 @@ void forward_connected_layer(connected_layer layer, float *input) |
|
|
|
|
void backward_connected_layer(connected_layer layer, float *input, float *delta) |
|
|
|
|
{ |
|
|
|
|
int i; |
|
|
|
|
float alpha = 1./layer.batch; |
|
|
|
|
gradient_array(layer.output, layer.outputs*layer.batch, layer.activation, layer.delta); |
|
|
|
|
for(i = 0; i < layer.batch; ++i){ |
|
|
|
|
axpy_cpu(layer.outputs, 1, layer.delta + i*layer.outputs, 1, layer.bias_updates, 1); |
|
|
|
|
axpy_cpu(layer.outputs, alpha, layer.delta + i*layer.outputs, 1, layer.bias_updates, 1); |
|
|
|
|
} |
|
|
|
|
int m = layer.inputs; |
|
|
|
|
int k = layer.batch; |
|
|
|
@ -123,7 +125,7 @@ void backward_connected_layer(connected_layer layer, float *input, float *delta) |
|
|
|
|
float *a = input; |
|
|
|
|
float *b = layer.delta; |
|
|
|
|
float *c = layer.weight_updates; |
|
|
|
|
gemm(1,0,m,n,k,1,a,m,b,n,1,c,n); |
|
|
|
|
gemm(1,0,m,n,k,alpha,a,m,b,n,1,c,n); |
|
|
|
|
|
|
|
|
|
m = layer.batch; |
|
|
|
|
k = layer.outputs; |
|
|
|
@ -156,13 +158,18 @@ void push_connected_layer(connected_layer layer) |
|
|
|
|
|
|
|
|
|
void update_connected_layer_gpu(connected_layer layer) |
|
|
|
|
{ |
|
|
|
|
/*
|
|
|
|
|
cuda_pull_array(layer.weights_gpu, layer.weights, layer.inputs*layer.outputs); |
|
|
|
|
cuda_pull_array(layer.weight_updates_gpu, layer.weight_updates, layer.inputs*layer.outputs); |
|
|
|
|
printf("Weights: %f updates: %f\n", mag_array(layer.weights, layer.inputs*layer.outputs), layer.learning_rate*mag_array(layer.weight_updates, layer.inputs*layer.outputs)); |
|
|
|
|
*/ |
|
|
|
|
|
|
|
|
|
axpy_ongpu(layer.outputs, layer.learning_rate, layer.bias_updates_gpu, 1, layer.biases_gpu, 1); |
|
|
|
|
scal_ongpu(layer.outputs, layer.momentum, layer.bias_updates_gpu, 1); |
|
|
|
|
|
|
|
|
|
axpy_ongpu(layer.inputs*layer.outputs, -layer.decay, layer.weights_gpu, 1, layer.weight_updates_gpu, 1); |
|
|
|
|
axpy_ongpu(layer.inputs*layer.outputs, layer.learning_rate, layer.weight_updates_gpu, 1, layer.weights_gpu, 1); |
|
|
|
|
scal_ongpu(layer.inputs*layer.outputs, layer.momentum, layer.weight_updates_gpu, 1); |
|
|
|
|
//pull_connected_layer(layer);
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void forward_connected_layer_gpu(connected_layer layer, float * input) |
|
|
|
@ -183,10 +190,11 @@ void forward_connected_layer_gpu(connected_layer layer, float * input) |
|
|
|
|
|
|
|
|
|
void backward_connected_layer_gpu(connected_layer layer, float * input, float * delta) |
|
|
|
|
{ |
|
|
|
|
float alpha = 1./layer.batch; |
|
|
|
|
int i; |
|
|
|
|
gradient_array_ongpu(layer.output_gpu, layer.outputs*layer.batch, layer.activation, layer.delta_gpu); |
|
|
|
|
for(i = 0; i < layer.batch; ++i){ |
|
|
|
|
axpy_ongpu_offset(layer.outputs, 1, layer.delta_gpu, i*layer.outputs, 1, layer.bias_updates_gpu, 0, 1); |
|
|
|
|
axpy_ongpu_offset(layer.outputs, alpha, layer.delta_gpu, i*layer.outputs, 1, layer.bias_updates_gpu, 0, 1); |
|
|
|
|
} |
|
|
|
|
int m = layer.inputs; |
|
|
|
|
int k = layer.batch; |
|
|
|
@ -194,7 +202,7 @@ void backward_connected_layer_gpu(connected_layer layer, float * input, float * |
|
|
|
|
float * a = input; |
|
|
|
|
float * b = layer.delta_gpu; |
|
|
|
|
float * c = layer.weight_updates_gpu; |
|
|
|
|
gemm_ongpu(1,0,m,n,k,1,a,m,b,n,1,c,n); |
|
|
|
|
gemm_ongpu(1,0,m,n,k,alpha,a,m,b,n,1,c,n); |
|
|
|
|
|
|
|
|
|
m = layer.batch; |
|
|
|
|
k = layer.outputs; |
|
|
|
|