|
|
@ -753,13 +753,14 @@ void try_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filena |
|
|
|
float *predictions = network_predict(net, X); |
|
|
|
float *predictions = network_predict(net, X); |
|
|
|
|
|
|
|
|
|
|
|
layer l = net.layers[layer_num]; |
|
|
|
layer l = net.layers[layer_num]; |
|
|
|
for(int i = 0; i < l.c; ++i){ |
|
|
|
int i; |
|
|
|
|
|
|
|
for(i = 0; i < l.c; ++i){ |
|
|
|
if(l.rolling_mean) printf("%f %f %f\n", l.rolling_mean[i], l.rolling_variance[i], l.scales[i]); |
|
|
|
if(l.rolling_mean) printf("%f %f %f\n", l.rolling_mean[i], l.rolling_variance[i], l.scales[i]); |
|
|
|
} |
|
|
|
} |
|
|
|
#ifdef GPU |
|
|
|
#ifdef GPU |
|
|
|
cuda_pull_array(l.output_gpu, l.output, l.outputs); |
|
|
|
cuda_pull_array(l.output_gpu, l.output, l.outputs); |
|
|
|
#endif |
|
|
|
#endif |
|
|
|
for(int i = 0; i < l.outputs; ++i){ |
|
|
|
for(i = 0; i < l.outputs; ++i){ |
|
|
|
printf("%f\n", l.output[i]); |
|
|
|
printf("%f\n", l.output[i]); |
|
|
|
} |
|
|
|
} |
|
|
|
/*
|
|
|
|
/*
|
|
|
@ -777,7 +778,7 @@ void try_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filena |
|
|
|
|
|
|
|
|
|
|
|
top_predictions(net, top, indexes); |
|
|
|
top_predictions(net, top, indexes); |
|
|
|
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time)); |
|
|
|
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time)); |
|
|
|
for(int i = 0; i < top; ++i){ |
|
|
|
for(i = 0; i < top; ++i){ |
|
|
|
int index = indexes[i]; |
|
|
|
int index = indexes[i]; |
|
|
|
printf("%s: %f\n", names[index], predictions[index]); |
|
|
|
printf("%s: %f\n", names[index], predictions[index]); |
|
|
|
} |
|
|
|
} |
|
|
|