pull/5299/head
Joseph Redmon 9 years ago
parent 64ffc28220
commit cff59ba135
  1. 4
      Makefile
  2. 46
      cfg/go.test.cfg
  3. 2
      src/classifier.c
  4. 11
      src/convolutional_kernels.cu
  5. 79
      src/convolutional_layer.c
  6. 3
      src/convolutional_layer.h
  7. 26
      src/gemm.c
  8. 5
      src/gemm.h
  9. 60
      src/go.c
  10. 14
      src/image.c
  11. 1
      src/layer.h
  12. 80
      src/parser.c

@ -1,5 +1,5 @@
GPU=0 GPU=1
OPENCV=0 OPENCV=1
DEBUG=0 DEBUG=0
ARCH= --gpu-architecture=compute_20 --gpu-code=compute_20 ARCH= --gpu-architecture=compute_20 --gpu-code=compute_20

@ -10,11 +10,11 @@ decay=0.0005
learning_rate=0.1 learning_rate=0.1
max_batches = 0 max_batches = 0
policy=steps policy=steps
steps=50000, 90000 steps=50000
scales=.1, .1 scales=.1
[convolutional] [convolutional]
filters=256 filters=512
size=3 size=3
stride=1 stride=1
pad=1 pad=1
@ -23,6 +23,14 @@ batch_normalize=1
[convolutional] [convolutional]
filters=256 filters=256
size=1
stride=1
pad=1
activation=leaky
batch_normalize=1
[convolutional]
filters=512
size=3 size=3
stride=1 stride=1
pad=1 pad=1
@ -31,6 +39,14 @@ batch_normalize=1
[convolutional] [convolutional]
filters=256 filters=256
size=1
stride=1
pad=1
activation=leaky
batch_normalize=1
[convolutional]
filters=512
size=3 size=3
stride=1 stride=1
pad=1 pad=1
@ -39,6 +55,14 @@ batch_normalize=1
[convolutional] [convolutional]
filters=256 filters=256
size=1
stride=1
pad=1
activation=leaky
batch_normalize=1
[convolutional]
filters=512
size=3 size=3
stride=1 stride=1
pad=1 pad=1
@ -47,12 +71,28 @@ batch_normalize=1
[convolutional] [convolutional]
filters=256 filters=256
size=1
stride=1
pad=1
activation=leaky
batch_normalize=1
[convolutional]
filters=512
size=3 size=3
stride=1 stride=1
pad=1 pad=1
activation=leaky activation=leaky
batch_normalize=1 batch_normalize=1
[convolutional]
filters=256
size=1
stride=1
pad=1
activation=leaky
batch_normalize=1
[convolutional] [convolutional]
filters=1 filters=1
size=1 size=1

@ -410,7 +410,7 @@ void validate_classifier_multi(char *datacfg, char *filename, char *weightfile)
char **labels = get_labels(label_list); char **labels = get_labels(label_list);
list *plist = get_paths(valid_list); list *plist = get_paths(valid_list);
int scales[] = {160, 192, 224, 288, 320, 352, 384}; int scales[] = {192, 224, 288, 320, 352};
int nscales = sizeof(scales)/sizeof(scales[0]); int nscales = sizeof(scales)/sizeof(scales[0]);
char **paths = (char **)list_to_array(plist); char **paths = (char **)list_to_array(plist);

@ -65,9 +65,9 @@ __global__ void backward_scale_kernel(float *x_norm, float *delta, int batch, in
} }
} }
void binarize_filters_gpu(float *filters, int n, int size, float *mean) void binarize_filters_gpu(float *filters, int n, int size, float *binary)
{ {
binarize_filters_kernel<<<cuda_gridsize(n), BLOCK>>>(filters, n, size, mean); binarize_filters_kernel<<<cuda_gridsize(n), BLOCK>>>(filters, n, size, binary);
check_error(cudaPeekAtLastError()); check_error(cudaPeekAtLastError());
} }
@ -161,13 +161,6 @@ void backward_bias_gpu(float *bias_updates, float *delta, int batch, int n, int
check_error(cudaPeekAtLastError()); check_error(cudaPeekAtLastError());
} }
void swap_binary(convolutional_layer *l)
{
float *swap = l->filters_gpu;
l->filters_gpu = l->binary_filters_gpu;
l->binary_filters_gpu = swap;
}
void forward_convolutional_layer_gpu(convolutional_layer l, network_state state) void forward_convolutional_layer_gpu(convolutional_layer l, network_state state)
{ {
int i; int i;

@ -7,6 +7,52 @@
#include <stdio.h> #include <stdio.h>
#include <time.h> #include <time.h>
void swap_binary(convolutional_layer *l)
{
float *swap = l->filters;
l->filters = l->binary_filters;
l->binary_filters = swap;
#ifdef GPU
swap = l->filters_gpu;
l->filters_gpu = l->binary_filters_gpu;
l->binary_filters_gpu = swap;
#endif
}
void binarize_filters2(float *filters, int n, int size, char *binary, float *scales)
{
int i, k, f;
for(f = 0; f < n; ++f){
float mean = 0;
for(i = 0; i < size; ++i){
mean += fabs(filters[f*size + i]);
}
mean = mean / size;
scales[f] = mean;
for(i = 0; i < size/8; ++i){
binary[f*size + i] = (filters[f*size + i] > 0) ? 1 : 0;
for(k = 0; k < 8; ++k){
}
}
}
}
void binarize_filters(float *filters, int n, int size, float *binary)
{
int i, f;
for(f = 0; f < n; ++f){
float mean = 0;
for(i = 0; i < size; ++i){
mean += fabs(filters[f*size + i]);
}
mean = mean / size;
for(i = 0; i < size; ++i){
binary[f*size + i] = (filters[f*size + i] > 0) ? mean : -mean;
}
}
}
int convolutional_out_height(convolutional_layer l) int convolutional_out_height(convolutional_layer l)
{ {
int h = l.h; int h = l.h;
@ -139,6 +185,8 @@ convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int
if(binary){ if(binary){
l.binary_filters = calloc(c*n*size*size, sizeof(float)); l.binary_filters = calloc(c*n*size*size, sizeof(float));
l.cfilters = calloc(c*n*size*size, sizeof(char));
l.scales = calloc(n, sizeof(float));
} }
if(batch_normalize){ if(batch_normalize){
@ -295,13 +343,42 @@ void backward_bias(float *bias_updates, float *delta, int batch, int n, int size
} }
} }
void forward_convolutional_layer(const convolutional_layer l, network_state state) void forward_convolutional_layer(convolutional_layer l, network_state state)
{ {
int out_h = convolutional_out_height(l); int out_h = convolutional_out_height(l);
int out_w = convolutional_out_width(l); int out_w = convolutional_out_width(l);
int i; int i;
fill_cpu(l.outputs*l.batch, 0, l.output, 1); fill_cpu(l.outputs*l.batch, 0, l.output, 1);
/*
if(l.binary){
binarize_filters(l.filters, l.n, l.c*l.size*l.size, l.binary_filters);
binarize_filters2(l.filters, l.n, l.c*l.size*l.size, l.cfilters, l.scales);
swap_binary(&l);
}
*/
if(l.binary){
int m = l.n;
int k = l.size*l.size*l.c;
int n = out_h*out_w;
char *a = l.cfilters;
float *b = l.col_image;
float *c = l.output;
for(i = 0; i < l.batch; ++i){
im2col_cpu(state.input, l.c, l.h, l.w,
l.size, l.stride, l.pad, b);
gemm_bin(m,n,k,1,a,k,b,n,c,n);
c += n*m;
state.input += l.c*l.h*l.w;
}
scale_bias(l.output, l.scales, l.batch, l.n, out_h*out_w);
add_bias(l.output, l.biases, l.batch, l.n, out_h*out_w);
activate_array(l.output, m*n*l.batch, l.activation);
return;
}
int m = l.n; int m = l.n;
int k = l.size*l.size*l.c; int k = l.size*l.size*l.c;

@ -27,6 +27,9 @@ void resize_convolutional_layer(convolutional_layer *layer, int w, int h);
void forward_convolutional_layer(const convolutional_layer layer, network_state state); void forward_convolutional_layer(const convolutional_layer layer, network_state state);
void update_convolutional_layer(convolutional_layer layer, int batch, float learning_rate, float momentum, float decay); void update_convolutional_layer(convolutional_layer layer, int batch, float learning_rate, float momentum, float decay);
image *visualize_convolutional_layer(convolutional_layer layer, char *window, image *prev_filters); image *visualize_convolutional_layer(convolutional_layer layer, char *window, image *prev_filters);
void binarize_filters(float *filters, int n, int size, float *binary);
void swap_binary(convolutional_layer *l);
void binarize_filters2(float *filters, int n, int size, char *binary, float *scales);
void backward_convolutional_layer(convolutional_layer layer, network_state state); void backward_convolutional_layer(convolutional_layer layer, network_state state);

@ -5,6 +5,28 @@
#include <stdio.h> #include <stdio.h>
#include <math.h> #include <math.h>
void gemm_bin(int M, int N, int K, float ALPHA,
char *A, int lda,
float *B, int ldb,
float *C, int ldc)
{
int i,j,k;
for(i = 0; i < M; ++i){
for(k = 0; k < K; ++k){
char A_PART = A[i*lda+k];
if(A_PART){
for(j = 0; j < N; ++j){
C[i*ldc+j] += B[k*ldb+j];
}
} else {
for(j = 0; j < N; ++j){
C[i*ldc+j] -= B[k*ldb+j];
}
}
}
}
}
float *random_matrix(int rows, int cols) float *random_matrix(int rows, int cols)
{ {
int i; int i;
@ -276,7 +298,7 @@ void test_gpu_accuracy(int TA, int TB, int m, int k, int n)
int test_gpu_blas() int test_gpu_blas()
{ {
/* /*
test_gpu_accuracy(0,0,10,576,75); test_gpu_accuracy(0,0,10,576,75);
test_gpu_accuracy(0,0,17,10,10); test_gpu_accuracy(0,0,17,10,10);
@ -310,7 +332,7 @@ int test_gpu_blas()
time_ongpu(0,0,512,4608,196); time_ongpu(0,0,512,4608,196);
time_ongpu(1,1,4608,512,196); time_ongpu(1,1,4608,512,196);
return 0; return 0;
} }
#endif #endif

@ -1,6 +1,11 @@
#ifndef GEMM_H #ifndef GEMM_H
#define GEMM_H #define GEMM_H
void gemm_bin(int M, int N, int K, float ALPHA,
char *A, int lda,
float *B, int ldb,
float *C, int ldc);
void gemm(int TA, int TB, int M, int N, int K, float ALPHA, void gemm(int TA, int TB, int M, int N, int K, float ALPHA,
float *A, int lda, float *A, int lda,
float *B, int ldb, float *B, int ldb,

@ -10,6 +10,7 @@
int inverted = 1; int inverted = 1;
int noi = 1; int noi = 1;
static const int nind = 5;
void train_go(char *cfgfile, char *weightfile) void train_go(char *cfgfile, char *weightfile)
{ {
@ -147,12 +148,14 @@ void print_board(float *board, int swap, int *indexes)
int index = j*19 + i; int index = j*19 + i;
if(indexes){ if(indexes){
int found = 0; int found = 0;
for(n = 0; n < 3; ++n){ for(n = 0; n < nind; ++n){
if(index == indexes[n]){ if(index == indexes[n]){
found = 1; found = 1;
if(n == 0) printf("\uff11"); if(n == 0) printf("\uff11");
else if(n == 1) printf("\uff12"); else if(n == 1) printf("\uff12");
else if(n == 2) printf("\uff13"); else if(n == 2) printf("\uff13");
else if(n == 3) printf("\uff14");
else if(n == 4) printf("\uff15");
} }
} }
if(found) continue; if(found) continue;
@ -211,59 +214,56 @@ void test_go(char *filename, char *weightfile)
if(board[i]) move[i] = 0; if(board[i]) move[i] = 0;
} }
int indexes[3]; int indexes[nind];
int row, col; int row, col;
top_k(move, 19*19, 3, indexes); top_k(move, 19*19, nind, indexes);
print_board(board, color, indexes); print_board(board, color, indexes);
for(i = 0; i < 3; ++i){ for(i = 0; i < nind; ++i){
int index = indexes[i]; int index = indexes[i];
row = index / 19; row = index / 19;
col = index % 19; col = index % 19;
printf("Suggested: %c %d, %.2f%%\n", col + 'A' + 1*(col > 7 && noi), (inverted)?19 - row : row+1, move[index]*100); printf("%d: %c %d, %.2f%%\n", i+1, col + 'A' + 1*(col > 7 && noi), (inverted)?19 - row : row+1, move[index]*100);
} }
int index = indexes[0];
int rec_row = index / 19;
int rec_col = index % 19;
if(color == 1) printf("\u25EF Enter move: "); if(color == 1) printf("\u25EF Enter move: ");
else printf("\u25C9 Enter move: "); else printf("\u25C9 Enter move: ");
char c; char c;
char *line = fgetl(stdin); char *line = fgetl(stdin);
int num = sscanf(line, "%c %d", &c, &row); int picked = 1;
if (strlen(line) == 0){ int dnum = sscanf(line, "%d", &picked);
row = rec_row; int cnum = sscanf(line, "%c", &c);
col = rec_col; if (strlen(line) == 0 || dnum) {
--picked;
if (picked < nind){
int index = indexes[picked];
row = index / 19;
col = index % 19;
board[row*19 + col] = 1; board[row*19 + col] = 1;
}else if (c < 'A' || c > 'T'){ }
if (c == 'p'){ } else if (cnum){
flip_board(board); if (c <= 'T' && c >= 'A'){
color = -color; int num = sscanf(line, "%c %d", &c, &row);
free(line); row = (inverted)?19 - row : row-1;
continue; col = c - 'A';
if (col > 7 && noi) col -= 1;
if (num == 2) board[row*19 + col] = 1;
} else if (c == 'p') {
// Pass
} else if(c=='b' || c == 'w'){ } else if(c=='b' || c == 'w'){
char g; char g;
num = sscanf(line, "%c %c %d", &g, &c, &row); int num = sscanf(line, "%c %c %d", &g, &c, &row);
row = (inverted)?19 - row : row-1; row = (inverted)?19 - row : row-1;
col = c - 'A'; col = c - 'A';
if (col > 7 && noi) col -= 1; if (col > 7 && noi) col -= 1;
if (num == 3) board[row*19 + col] = (g == 'b') ? color : -color; if (num == 3) board[row*19 + col] = (g == 'b') ? color : -color;
}else{ } else if(c == 'c'){
char g; char g;
num = sscanf(line, "%c %c %d", &g, &c, &row); int num = sscanf(line, "%c %c %d", &g, &c, &row);
row = (inverted)?19 - row : row-1; row = (inverted)?19 - row : row-1;
col = c - 'A'; col = c - 'A';
if (col > 7 && noi) col -= 1; if (col > 7 && noi) col -= 1;
if (num == 3) board[row*19 + col] = 0; if (num == 3) board[row*19 + col] = 0;
} }
} else if(num == 2){
row = (inverted)?19 - row : row-1;
col = c - 'A';
if (col > 7 && noi) col -= 1;
board[row*19 + col] = 1;
}else{
free(line);
continue;
} }
free(line); free(line);
update_board(board); update_board(board);

@ -676,6 +676,17 @@ void show_image_cv(image p, const char *name)
} }
} }
image binarize_image(image im)
{
image c = copy_image(im);
int i;
for(i = 0; i < im.w * im.h * im.c; ++i){
if(c.data[i] > .5) c.data[i] = 1;
else c.data[i] = 0;
}
return c;
}
void saturate_image(image im, float sat) void saturate_image(image im, float sat)
{ {
rgb_to_hsv(im); rgb_to_hsv(im);
@ -798,6 +809,8 @@ void show_image_cv(image p, const char *name)
image exp5 = copy_image(im); image exp5 = copy_image(im);
exposure_image(exp5, .5); exposure_image(exp5, .5);
image bin = binarize_image(im);
#ifdef GPU #ifdef GPU
image r = resize_image(im, im.w, im.h); image r = resize_image(im, im.w, im.h);
image black = make_image(im.w*2 + 3, im.h*2 + 3, 9); image black = make_image(im.w*2 + 3, im.h*2 + 3, 9);
@ -818,6 +831,7 @@ void show_image_cv(image p, const char *name)
#endif #endif
show_image(im, "Original"); show_image(im, "Original");
show_image(bin, "Binary");
show_image(gray, "Gray"); show_image(gray, "Gray");
show_image(sat2, "Saturation-2"); show_image(sat2, "Saturation-2");
show_image(sat5, "Saturation-.5"); show_image(sat5, "Saturation-.5");

@ -92,6 +92,7 @@ struct layer{
float *rand; float *rand;
float *cost; float *cost;
float *filters; float *filters;
char *cfilters;
float *filter_updates; float *filter_updates;
float *state; float *state;

@ -730,8 +730,44 @@ void save_weights_double(network net, char *filename)
fclose(fp); fclose(fp);
} }
void save_convolutional_weights_binary(layer l, FILE *fp)
{
#ifdef GPU
if(gpu_index >= 0){
pull_convolutional_layer(l);
}
#endif
binarize_filters(l.filters, l.n, l.c*l.size*l.size, l.binary_filters);
int size = l.c*l.size*l.size;
int i, j, k;
fwrite(l.biases, sizeof(float), l.n, fp);
if (l.batch_normalize){
fwrite(l.scales, sizeof(float), l.n, fp);
fwrite(l.rolling_mean, sizeof(float), l.n, fp);
fwrite(l.rolling_variance, sizeof(float), l.n, fp);
}
for(i = 0; i < l.n; ++i){
float mean = l.binary_filters[i*size];
if(mean < 0) mean = -mean;
fwrite(&mean, sizeof(float), 1, fp);
for(j = 0; j < size/8; ++j){
int index = i*size + j*8;
unsigned char c = 0;
for(k = 0; k < 8; ++k){
if (j*8 + k >= size) break;
if (l.binary_filters[index + k] > 0) c = (c | 1<<k);
}
fwrite(&c, sizeof(char), 1, fp);
}
}
}
void save_convolutional_weights(layer l, FILE *fp) void save_convolutional_weights(layer l, FILE *fp)
{ {
if(l.binary){
//save_convolutional_weights_binary(l, fp);
//return;
}
#ifdef GPU #ifdef GPU
if(gpu_index >= 0){ if(gpu_index >= 0){
pull_convolutional_layer(l); pull_convolutional_layer(l);
@ -843,27 +879,55 @@ void load_connected_weights(layer l, FILE *fp, int transpose)
#endif #endif
} }
void load_convolutional_weights(layer l, FILE *fp) void load_convolutional_weights_binary(layer l, FILE *fp)
{ {
int num = l.n*l.c*l.size*l.size;
fread(l.biases, sizeof(float), l.n, fp); fread(l.biases, sizeof(float), l.n, fp);
if (l.batch_normalize && (!l.dontloadscales)){ if (l.batch_normalize && (!l.dontloadscales)){
fread(l.scales, sizeof(float), l.n, fp); fread(l.scales, sizeof(float), l.n, fp);
fread(l.rolling_mean, sizeof(float), l.n, fp); fread(l.rolling_mean, sizeof(float), l.n, fp);
fread(l.rolling_variance, sizeof(float), l.n, fp); fread(l.rolling_variance, sizeof(float), l.n, fp);
/* }
int i; int size = l.c*l.size*l.size;
int i, j, k;
for(i = 0; i < l.n; ++i){ for(i = 0; i < l.n; ++i){
if(l.rolling_mean[i] > 1 || l.rolling_mean[i] < -1 || l.rolling_variance[i] > 1 || l.rolling_variance[i] < -1) float mean = 0;
printf("%f %f\n", l.rolling_mean[i], l.rolling_variance[i]); fread(&mean, sizeof(float), 1, fp);
for(j = 0; j < size/8; ++j){
int index = i*size + j*8;
unsigned char c = 0;
fread(&c, sizeof(char), 1, fp);
for(k = 0; k < 8; ++k){
if (j*8 + k >= size) break;
l.filters[index + k] = (c & 1<<k) ? mean : -mean;
} }
*/
} }
fflush(stdout); }
binarize_filters2(l.filters, l.n, l.c*l.size*l.size, l.cfilters, l.scales);
#ifdef GPU
if(gpu_index >= 0){
push_convolutional_layer(l);
}
#endif
}
void load_convolutional_weights(layer l, FILE *fp)
{
if(l.binary){
//load_convolutional_weights_binary(l, fp);
//return;
}
int num = l.n*l.c*l.size*l.size;
fread(l.biases, sizeof(float), l.n, fp);
if (l.batch_normalize && (!l.dontloadscales)){
fread(l.scales, sizeof(float), l.n, fp);
fread(l.rolling_mean, sizeof(float), l.n, fp);
fread(l.rolling_variance, sizeof(float), l.n, fp);
}
fread(l.filters, sizeof(float), num, fp); fread(l.filters, sizeof(float), num, fp);
if (l.flipped) { if (l.flipped) {
transpose_matrix(l.filters, l.c*l.size*l.size, l.n); transpose_matrix(l.filters, l.c*l.size*l.size, l.n);
} }
if (l.binary) binarize_filters(l.filters, l.n, l.c*l.size*l.size, l.filters);
#ifdef GPU #ifdef GPU
if(gpu_index >= 0){ if(gpu_index >= 0){
push_convolutional_layer(l); push_convolutional_layer(l);

Loading…
Cancel
Save