|
|
|
@ -429,15 +429,16 @@ void train_imagenet_distributed(char *address) |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void train_imagenet() |
|
|
|
|
void train_imagenet(char *cfgfile) |
|
|
|
|
{ |
|
|
|
|
float avg_loss = 1; |
|
|
|
|
//network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg");
|
|
|
|
|
srand(time(0)); |
|
|
|
|
network net = parse_network_cfg("cfg/net.part"); |
|
|
|
|
network net = parse_network_cfg(cfgfile); |
|
|
|
|
set_learning_network(&net, .000001, .9, .0005); |
|
|
|
|
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
|
|
|
|
int imgs = 1000/net.batch+1; |
|
|
|
|
int i = 9540; |
|
|
|
|
int i = 20590; |
|
|
|
|
char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list"); |
|
|
|
|
list *plist = get_paths("/data/imagenet/cls.train.list"); |
|
|
|
|
char **paths = (char **)list_to_array(plist); |
|
|
|
@ -446,14 +447,14 @@ void train_imagenet() |
|
|
|
|
pthread_t load_thread; |
|
|
|
|
data train; |
|
|
|
|
data buffer; |
|
|
|
|
load_thread = load_data_thread(paths, imgs*net.batch, plist->size, labels, 1000, 224, 224, &buffer); |
|
|
|
|
load_thread = load_data_thread(paths, imgs*net.batch, plist->size, labels, 1000, 256, 256, &buffer); |
|
|
|
|
while(1){ |
|
|
|
|
i += 1; |
|
|
|
|
time=clock(); |
|
|
|
|
pthread_join(load_thread, 0); |
|
|
|
|
train = buffer; |
|
|
|
|
normalize_data_rows(train); |
|
|
|
|
load_thread = load_data_thread(paths, imgs*net.batch, plist->size, labels, 1000, 224, 224, &buffer); |
|
|
|
|
load_thread = load_data_thread(paths, imgs*net.batch, plist->size, labels, 1000, 256, 256, &buffer); |
|
|
|
|
printf("Loaded: %lf seconds\n", sec(clock()-time)); |
|
|
|
|
time=clock(); |
|
|
|
|
#ifdef GPU |
|
|
|
@ -490,7 +491,7 @@ void validate_imagenet(char *filename) |
|
|
|
|
int num = (i+1)*m/splits - i*m/splits; |
|
|
|
|
|
|
|
|
|
data val, buffer; |
|
|
|
|
pthread_t load_thread = load_data_thread(paths, num, 0, labels, 1000, 224, 224, &buffer); |
|
|
|
|
pthread_t load_thread = load_data_thread(paths, num, 0, labels, 1000, 256, 256, &buffer); |
|
|
|
|
for(i = 1; i <= splits; ++i){ |
|
|
|
|
time=clock(); |
|
|
|
|
|
|
|
|
@ -500,7 +501,7 @@ void validate_imagenet(char *filename) |
|
|
|
|
|
|
|
|
|
num = (i+1)*m/splits - i*m/splits; |
|
|
|
|
char **part = paths+(i*m/splits); |
|
|
|
|
if(i != splits) load_thread = load_data_thread(part, num, 0, labels, 1000, 224, 224, &buffer); |
|
|
|
|
if(i != splits) load_thread = load_data_thread(part, num, 0, labels, 1000, 256, 256, &buffer); |
|
|
|
|
printf("Loaded: %d images in %lf seconds\n", val.X.rows, sec(clock()-time)); |
|
|
|
|
|
|
|
|
|
time=clock(); |
|
|
|
@ -514,9 +515,10 @@ void validate_imagenet(char *filename) |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void test_detection() |
|
|
|
|
void test_detection(char *cfgfile) |
|
|
|
|
{ |
|
|
|
|
network net = parse_network_cfg("cfg/detnet.test"); |
|
|
|
|
network net = parse_network_cfg(cfgfile); |
|
|
|
|
set_batch_network(&net, 1); |
|
|
|
|
srand(2222222); |
|
|
|
|
clock_t time; |
|
|
|
|
char filename[256]; |
|
|
|
@ -618,14 +620,14 @@ void test_cifar10() |
|
|
|
|
void train_cifar10() |
|
|
|
|
{ |
|
|
|
|
srand(555555); |
|
|
|
|
network net = parse_network_cfg("cfg/cifar10.cfg"); |
|
|
|
|
network net = parse_network_cfg("cfg/cifar_ramp.part"); |
|
|
|
|
data test = load_cifar10_data("data/cifar10/test_batch.bin"); |
|
|
|
|
int count = 0; |
|
|
|
|
int iters = 10000/net.batch; |
|
|
|
|
data train = load_all_cifar10(); |
|
|
|
|
while(++count <= 10000){ |
|
|
|
|
clock_t start = clock(), end; |
|
|
|
|
float loss = train_network_sgd(net, train, iters); |
|
|
|
|
float loss = train_network_sgd_gpu(net, train, iters); |
|
|
|
|
end = clock(); |
|
|
|
|
//visualize_network(net);
|
|
|
|
|
//cvWaitKey(5000);
|
|
|
|
@ -633,10 +635,10 @@ void train_cifar10() |
|
|
|
|
//float test_acc = network_accuracy(net, test);
|
|
|
|
|
//printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
|
|
|
|
|
if(count%10 == 0){ |
|
|
|
|
float test_acc = network_accuracy(net, test); |
|
|
|
|
float test_acc = network_accuracy_gpu(net, test); |
|
|
|
|
printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay); |
|
|
|
|
char buff[256]; |
|
|
|
|
sprintf(buff, "/home/pjreddie/cifar/cifar10_2_%d.cfg", count); |
|
|
|
|
sprintf(buff, "/home/pjreddie/cifar/cifar10_%d.cfg", count); |
|
|
|
|
save_network(net, buff); |
|
|
|
|
}else{ |
|
|
|
|
printf("%d: Loss: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, (float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay); |
|
|
|
@ -899,40 +901,40 @@ void test_correct_alexnet() |
|
|
|
|
printf("%d\n", plist->size); |
|
|
|
|
clock_t time; |
|
|
|
|
int count = 0; |
|
|
|
|
|
|
|
|
|
srand(222222); |
|
|
|
|
network net = parse_network_cfg("cfg/net.cfg"); |
|
|
|
|
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
|
|
|
|
network net; |
|
|
|
|
int imgs = 1000/net.batch+1; |
|
|
|
|
imgs = 1; |
|
|
|
|
|
|
|
|
|
#ifdef GPU |
|
|
|
|
count = 0; |
|
|
|
|
srand(222222); |
|
|
|
|
net = parse_network_cfg("cfg/net.cfg"); |
|
|
|
|
while(++count <= 5){ |
|
|
|
|
time=clock(); |
|
|
|
|
data train = load_data(paths, imgs*net.batch, plist->size, labels, 1000, 224,224); |
|
|
|
|
data train = load_data(paths, imgs*net.batch, plist->size, labels, 1000, 256, 256); |
|
|
|
|
//translate_data_rows(train, -144);
|
|
|
|
|
normalize_data_rows(train); |
|
|
|
|
printf("Loaded: %lf seconds\n", sec(clock()-time)); |
|
|
|
|
time=clock(); |
|
|
|
|
float loss = train_network_data_cpu(net, train, imgs); |
|
|
|
|
float loss = train_network_data_gpu(net, train, imgs); |
|
|
|
|
printf("%d: %f, %lf seconds, %d images\n", count, loss, sec(clock()-time), imgs*net.batch); |
|
|
|
|
free_data(train); |
|
|
|
|
} |
|
|
|
|
#ifdef GPU |
|
|
|
|
#endif |
|
|
|
|
count = 0; |
|
|
|
|
srand(222222); |
|
|
|
|
net = parse_network_cfg("cfg/net.cfg"); |
|
|
|
|
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
|
|
|
|
while(++count <= 5){ |
|
|
|
|
time=clock(); |
|
|
|
|
data train = load_data(paths, imgs*net.batch, plist->size, labels, 1000, 224, 224); |
|
|
|
|
data train = load_data(paths, imgs*net.batch, plist->size, labels, 1000, 256,256); |
|
|
|
|
//translate_data_rows(train, -144);
|
|
|
|
|
normalize_data_rows(train); |
|
|
|
|
printf("Loaded: %lf seconds\n", sec(clock()-time)); |
|
|
|
|
time=clock(); |
|
|
|
|
float loss = train_network_data_gpu(net, train, imgs); |
|
|
|
|
float loss = train_network_data_cpu(net, train, imgs); |
|
|
|
|
printf("%d: %f, %lf seconds, %d images\n", count, loss, sec(clock()-time), imgs*net.batch); |
|
|
|
|
free_data(train); |
|
|
|
|
} |
|
|
|
|
#endif |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void run_server() |
|
|
|
@ -972,22 +974,23 @@ int main(int argc, char *argv[]) |
|
|
|
|
#ifdef GPU |
|
|
|
|
cl_setup(index); |
|
|
|
|
#endif |
|
|
|
|
if(0==strcmp(argv[1], "train")) train_imagenet(); |
|
|
|
|
else if(0==strcmp(argv[1], "detection")) train_detection_net(); |
|
|
|
|
if(0==strcmp(argv[1], "detection")) train_detection_net(); |
|
|
|
|
else if(0==strcmp(argv[1], "asirra")) train_asirra(); |
|
|
|
|
else if(0==strcmp(argv[1], "nist")) train_nist(); |
|
|
|
|
else if(0==strcmp(argv[1], "cifar")) train_cifar10(); |
|
|
|
|
else if(0==strcmp(argv[1], "test_correct")) test_correct_alexnet(); |
|
|
|
|
else if(0==strcmp(argv[1], "test")) test_imagenet(); |
|
|
|
|
else if(0==strcmp(argv[1], "server")) run_server(); |
|
|
|
|
else if(0==strcmp(argv[1], "detect")) test_detection(); |
|
|
|
|
#ifdef GPU |
|
|
|
|
else if(0==strcmp(argv[1], "test_gpu")) test_gpu_blas(); |
|
|
|
|
#endif |
|
|
|
|
else if(argc < 3){ |
|
|
|
|
fprintf(stderr, "usage: %s <function>\n", argv[0]); |
|
|
|
|
fprintf(stderr, "usage: %s <function> <filename>\n", argv[0]); |
|
|
|
|
return 0; |
|
|
|
|
} |
|
|
|
|
else if(0==strcmp(argv[1], "train")) train_imagenet(argv[2]); |
|
|
|
|
else if(0==strcmp(argv[1], "client")) train_imagenet_distributed(argv[2]); |
|
|
|
|
else if(0==strcmp(argv[1], "detect")) test_detection(argv[2]); |
|
|
|
|
else if(0==strcmp(argv[1], "init")) test_init(argv[2]); |
|
|
|
|
else if(0==strcmp(argv[1], "visualize")) test_visualize(argv[2]); |
|
|
|
|
else if(0==strcmp(argv[1], "valid")) validate_imagenet(argv[2]); |
|
|
|
|