|
|
@ -9,6 +9,7 @@ |
|
|
|
#include "maxpool_layer.h" |
|
|
|
#include "maxpool_layer.h" |
|
|
|
#include "normalization_layer.h" |
|
|
|
#include "normalization_layer.h" |
|
|
|
#include "softmax_layer.h" |
|
|
|
#include "softmax_layer.h" |
|
|
|
|
|
|
|
#include "dropout_layer.h" |
|
|
|
#include "list.h" |
|
|
|
#include "list.h" |
|
|
|
#include "option_list.h" |
|
|
|
#include "option_list.h" |
|
|
|
#include "utils.h" |
|
|
|
#include "utils.h" |
|
|
@ -21,6 +22,7 @@ typedef struct{ |
|
|
|
int is_convolutional(section *s); |
|
|
|
int is_convolutional(section *s); |
|
|
|
int is_connected(section *s); |
|
|
|
int is_connected(section *s); |
|
|
|
int is_maxpool(section *s); |
|
|
|
int is_maxpool(section *s); |
|
|
|
|
|
|
|
int is_dropout(section *s); |
|
|
|
int is_softmax(section *s); |
|
|
|
int is_softmax(section *s); |
|
|
|
int is_normalization(section *s); |
|
|
|
int is_normalization(section *s); |
|
|
|
list *read_cfg(char *filename); |
|
|
|
list *read_cfg(char *filename); |
|
|
@ -41,10 +43,11 @@ void free_section(section *s) |
|
|
|
free(s); |
|
|
|
free(s); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
convolutional_layer *parse_convolutional(list *options, network net, int count) |
|
|
|
convolutional_layer *parse_convolutional(list *options, network *net, int count) |
|
|
|
{ |
|
|
|
{ |
|
|
|
int i; |
|
|
|
int i; |
|
|
|
int h,w,c; |
|
|
|
int h,w,c; |
|
|
|
|
|
|
|
float learning_rate, momentum, decay; |
|
|
|
int n = option_find_int(options, "filters",1); |
|
|
|
int n = option_find_int(options, "filters",1); |
|
|
|
int size = option_find_int(options, "size",1); |
|
|
|
int size = option_find_int(options, "size",1); |
|
|
|
int stride = option_find_int(options, "stride",1); |
|
|
|
int stride = option_find_int(options, "stride",1); |
|
|
@ -52,18 +55,27 @@ convolutional_layer *parse_convolutional(list *options, network net, int count) |
|
|
|
char *activation_s = option_find_str(options, "activation", "sigmoid"); |
|
|
|
char *activation_s = option_find_str(options, "activation", "sigmoid"); |
|
|
|
ACTIVATION activation = get_activation(activation_s); |
|
|
|
ACTIVATION activation = get_activation(activation_s); |
|
|
|
if(count == 0){ |
|
|
|
if(count == 0){ |
|
|
|
|
|
|
|
learning_rate = option_find_float(options, "learning_rate", .001); |
|
|
|
|
|
|
|
momentum = option_find_float(options, "momentum", .9); |
|
|
|
|
|
|
|
decay = option_find_float(options, "decay", .0001); |
|
|
|
h = option_find_int(options, "height",1); |
|
|
|
h = option_find_int(options, "height",1); |
|
|
|
w = option_find_int(options, "width",1); |
|
|
|
w = option_find_int(options, "width",1); |
|
|
|
c = option_find_int(options, "channels",1); |
|
|
|
c = option_find_int(options, "channels",1); |
|
|
|
net.batch = option_find_int(options, "batch",1); |
|
|
|
net->batch = option_find_int(options, "batch",1); |
|
|
|
|
|
|
|
net->learning_rate = learning_rate; |
|
|
|
|
|
|
|
net->momentum = momentum; |
|
|
|
|
|
|
|
net->decay = decay; |
|
|
|
}else{ |
|
|
|
}else{ |
|
|
|
image m = get_network_image_layer(net, count-1); |
|
|
|
learning_rate = option_find_float_quiet(options, "learning_rate", net->learning_rate); |
|
|
|
|
|
|
|
momentum = option_find_float_quiet(options, "momentum", net->momentum); |
|
|
|
|
|
|
|
decay = option_find_float_quiet(options, "decay", net->decay); |
|
|
|
|
|
|
|
image m = get_network_image_layer(*net, count-1); |
|
|
|
h = m.h; |
|
|
|
h = m.h; |
|
|
|
w = m.w; |
|
|
|
w = m.w; |
|
|
|
c = m.c; |
|
|
|
c = m.c; |
|
|
|
if(h == 0) error("Layer before convolutional layer must output image."); |
|
|
|
if(h == 0) error("Layer before convolutional layer must output image."); |
|
|
|
} |
|
|
|
} |
|
|
|
convolutional_layer *layer = make_convolutional_layer(net.batch,h,w,c,n,size,stride,pad,activation); |
|
|
|
convolutional_layer *layer = make_convolutional_layer(net->batch,h,w,c,n,size,stride,pad,activation,learning_rate,momentum,decay); |
|
|
|
char *data = option_find_str(options, "data", 0); |
|
|
|
char *data = option_find_str(options, "data", 0); |
|
|
|
if(data){ |
|
|
|
if(data){ |
|
|
|
char *curr = data; |
|
|
|
char *curr = data; |
|
|
@ -81,25 +93,60 @@ convolutional_layer *parse_convolutional(list *options, network net, int count) |
|
|
|
curr = next+1; |
|
|
|
curr = next+1; |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
char *weights = option_find_str(options, "weights", 0); |
|
|
|
|
|
|
|
char *biases = option_find_str(options, "biases", 0); |
|
|
|
|
|
|
|
if(biases){ |
|
|
|
|
|
|
|
char *curr = biases; |
|
|
|
|
|
|
|
char *next = biases; |
|
|
|
|
|
|
|
int done = 0; |
|
|
|
|
|
|
|
for(i = 0; i < n && !done; ++i){ |
|
|
|
|
|
|
|
while(*++next !='\0' && *next != ','); |
|
|
|
|
|
|
|
if(*next == '\0') done = 1; |
|
|
|
|
|
|
|
*next = '\0'; |
|
|
|
|
|
|
|
sscanf(curr, "%g", &layer->biases[i]); |
|
|
|
|
|
|
|
curr = next+1; |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
if(weights){ |
|
|
|
|
|
|
|
char *curr = weights; |
|
|
|
|
|
|
|
char *next = weights; |
|
|
|
|
|
|
|
int done = 0; |
|
|
|
|
|
|
|
for(i = 0; i < c*n*size*size && !done; ++i){ |
|
|
|
|
|
|
|
while(*++next !='\0' && *next != ','); |
|
|
|
|
|
|
|
if(*next == '\0') done = 1; |
|
|
|
|
|
|
|
*next = '\0'; |
|
|
|
|
|
|
|
sscanf(curr, "%g", &layer->filters[i]); |
|
|
|
|
|
|
|
curr = next+1; |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
} |
|
|
|
option_unused(options); |
|
|
|
option_unused(options); |
|
|
|
return layer; |
|
|
|
return layer; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
connected_layer *parse_connected(list *options, network net, int count) |
|
|
|
connected_layer *parse_connected(list *options, network *net, int count) |
|
|
|
{ |
|
|
|
{ |
|
|
|
int i; |
|
|
|
int i; |
|
|
|
int input; |
|
|
|
int input; |
|
|
|
|
|
|
|
float learning_rate, momentum, decay; |
|
|
|
int output = option_find_int(options, "output",1); |
|
|
|
int output = option_find_int(options, "output",1); |
|
|
|
float dropout = option_find_float(options, "dropout", 0.); |
|
|
|
|
|
|
|
char *activation_s = option_find_str(options, "activation", "sigmoid"); |
|
|
|
char *activation_s = option_find_str(options, "activation", "sigmoid"); |
|
|
|
ACTIVATION activation = get_activation(activation_s); |
|
|
|
ACTIVATION activation = get_activation(activation_s); |
|
|
|
if(count == 0){ |
|
|
|
if(count == 0){ |
|
|
|
input = option_find_int(options, "input",1); |
|
|
|
input = option_find_int(options, "input",1); |
|
|
|
net.batch = option_find_int(options, "batch",1); |
|
|
|
net->batch = option_find_int(options, "batch",1); |
|
|
|
|
|
|
|
learning_rate = option_find_float(options, "learning_rate", .001); |
|
|
|
|
|
|
|
momentum = option_find_float(options, "momentum", .9); |
|
|
|
|
|
|
|
decay = option_find_float(options, "decay", .0001); |
|
|
|
|
|
|
|
net->learning_rate = learning_rate; |
|
|
|
|
|
|
|
net->momentum = momentum; |
|
|
|
|
|
|
|
net->decay = decay; |
|
|
|
}else{ |
|
|
|
}else{ |
|
|
|
input = get_network_output_size_layer(net, count-1); |
|
|
|
learning_rate = option_find_float_quiet(options, "learning_rate", net->learning_rate); |
|
|
|
|
|
|
|
momentum = option_find_float_quiet(options, "momentum", net->momentum); |
|
|
|
|
|
|
|
decay = option_find_float_quiet(options, "decay", net->decay); |
|
|
|
|
|
|
|
input = get_network_output_size_layer(*net, count-1); |
|
|
|
} |
|
|
|
} |
|
|
|
connected_layer *layer = make_connected_layer(net.batch, input, output, dropout, activation); |
|
|
|
connected_layer *layer = make_connected_layer(net->batch, input, output, activation,learning_rate,momentum,decay); |
|
|
|
char *data = option_find_str(options, "data", 0); |
|
|
|
char *data = option_find_str(options, "data", 0); |
|
|
|
if(data){ |
|
|
|
if(data){ |
|
|
|
char *curr = data; |
|
|
|
char *curr = data; |
|
|
@ -121,42 +168,58 @@ connected_layer *parse_connected(list *options, network net, int count) |
|
|
|
return layer; |
|
|
|
return layer; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
softmax_layer *parse_softmax(list *options, network net, int count) |
|
|
|
softmax_layer *parse_softmax(list *options, network *net, int count) |
|
|
|
{ |
|
|
|
{ |
|
|
|
int input; |
|
|
|
int input; |
|
|
|
if(count == 0){ |
|
|
|
if(count == 0){ |
|
|
|
input = option_find_int(options, "input",1); |
|
|
|
input = option_find_int(options, "input",1); |
|
|
|
net.batch = option_find_int(options, "batch",1); |
|
|
|
net->batch = option_find_int(options, "batch",1); |
|
|
|
}else{ |
|
|
|
}else{ |
|
|
|
input = get_network_output_size_layer(net, count-1); |
|
|
|
input = get_network_output_size_layer(*net, count-1); |
|
|
|
} |
|
|
|
} |
|
|
|
softmax_layer *layer = make_softmax_layer(net.batch, input); |
|
|
|
softmax_layer *layer = make_softmax_layer(net->batch, input); |
|
|
|
option_unused(options); |
|
|
|
option_unused(options); |
|
|
|
return layer; |
|
|
|
return layer; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
maxpool_layer *parse_maxpool(list *options, network net, int count) |
|
|
|
maxpool_layer *parse_maxpool(list *options, network *net, int count) |
|
|
|
{ |
|
|
|
{ |
|
|
|
int h,w,c; |
|
|
|
int h,w,c; |
|
|
|
int stride = option_find_int(options, "stride",1); |
|
|
|
int stride = option_find_int(options, "stride",1); |
|
|
|
|
|
|
|
int size = option_find_int(options, "size",stride); |
|
|
|
if(count == 0){ |
|
|
|
if(count == 0){ |
|
|
|
h = option_find_int(options, "height",1); |
|
|
|
h = option_find_int(options, "height",1); |
|
|
|
w = option_find_int(options, "width",1); |
|
|
|
w = option_find_int(options, "width",1); |
|
|
|
c = option_find_int(options, "channels",1); |
|
|
|
c = option_find_int(options, "channels",1); |
|
|
|
net.batch = option_find_int(options, "batch",1); |
|
|
|
net->batch = option_find_int(options, "batch",1); |
|
|
|
}else{ |
|
|
|
}else{ |
|
|
|
image m = get_network_image_layer(net, count-1); |
|
|
|
image m = get_network_image_layer(*net, count-1); |
|
|
|
h = m.h; |
|
|
|
h = m.h; |
|
|
|
w = m.w; |
|
|
|
w = m.w; |
|
|
|
c = m.c; |
|
|
|
c = m.c; |
|
|
|
if(h == 0) error("Layer before convolutional layer must output image."); |
|
|
|
if(h == 0) error("Layer before convolutional layer must output image."); |
|
|
|
} |
|
|
|
} |
|
|
|
maxpool_layer *layer = make_maxpool_layer(net.batch,h,w,c,stride); |
|
|
|
maxpool_layer *layer = make_maxpool_layer(net->batch,h,w,c,size,stride); |
|
|
|
option_unused(options); |
|
|
|
option_unused(options); |
|
|
|
return layer; |
|
|
|
return layer; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
normalization_layer *parse_normalization(list *options, network net, int count) |
|
|
|
dropout_layer *parse_dropout(list *options, network *net, int count) |
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
int input; |
|
|
|
|
|
|
|
float probability = option_find_float(options, "probability", .5); |
|
|
|
|
|
|
|
if(count == 0){ |
|
|
|
|
|
|
|
net->batch = option_find_int(options, "batch",1); |
|
|
|
|
|
|
|
input = option_find_int(options, "input",1); |
|
|
|
|
|
|
|
}else{ |
|
|
|
|
|
|
|
input = get_network_output_size_layer(*net, count-1); |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
dropout_layer *layer = make_dropout_layer(net->batch,input,probability); |
|
|
|
|
|
|
|
option_unused(options); |
|
|
|
|
|
|
|
return layer; |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
normalization_layer *parse_normalization(list *options, network *net, int count) |
|
|
|
{ |
|
|
|
{ |
|
|
|
int h,w,c; |
|
|
|
int h,w,c; |
|
|
|
int size = option_find_int(options, "size",1); |
|
|
|
int size = option_find_int(options, "size",1); |
|
|
@ -167,15 +230,15 @@ normalization_layer *parse_normalization(list *options, network net, int count) |
|
|
|
h = option_find_int(options, "height",1); |
|
|
|
h = option_find_int(options, "height",1); |
|
|
|
w = option_find_int(options, "width",1); |
|
|
|
w = option_find_int(options, "width",1); |
|
|
|
c = option_find_int(options, "channels",1); |
|
|
|
c = option_find_int(options, "channels",1); |
|
|
|
net.batch = option_find_int(options, "batch",1); |
|
|
|
net->batch = option_find_int(options, "batch",1); |
|
|
|
}else{ |
|
|
|
}else{ |
|
|
|
image m = get_network_image_layer(net, count-1); |
|
|
|
image m = get_network_image_layer(*net, count-1); |
|
|
|
h = m.h; |
|
|
|
h = m.h; |
|
|
|
w = m.w; |
|
|
|
w = m.w; |
|
|
|
c = m.c; |
|
|
|
c = m.c; |
|
|
|
if(h == 0) error("Layer before convolutional layer must output image."); |
|
|
|
if(h == 0) error("Layer before convolutional layer must output image."); |
|
|
|
} |
|
|
|
} |
|
|
|
normalization_layer *layer = make_normalization_layer(net.batch,h,w,c,size, alpha, beta, kappa); |
|
|
|
normalization_layer *layer = make_normalization_layer(net->batch,h,w,c,size, alpha, beta, kappa); |
|
|
|
option_unused(options); |
|
|
|
option_unused(options); |
|
|
|
return layer; |
|
|
|
return layer; |
|
|
|
} |
|
|
|
} |
|
|
@ -191,30 +254,29 @@ network parse_network_cfg(char *filename) |
|
|
|
section *s = (section *)n->val; |
|
|
|
section *s = (section *)n->val; |
|
|
|
list *options = s->options; |
|
|
|
list *options = s->options; |
|
|
|
if(is_convolutional(s)){ |
|
|
|
if(is_convolutional(s)){ |
|
|
|
convolutional_layer *layer = parse_convolutional(options, net, count); |
|
|
|
convolutional_layer *layer = parse_convolutional(options, &net, count); |
|
|
|
net.types[count] = CONVOLUTIONAL; |
|
|
|
net.types[count] = CONVOLUTIONAL; |
|
|
|
net.layers[count] = layer; |
|
|
|
net.layers[count] = layer; |
|
|
|
net.batch = layer->batch; |
|
|
|
|
|
|
|
}else if(is_connected(s)){ |
|
|
|
}else if(is_connected(s)){ |
|
|
|
connected_layer *layer = parse_connected(options, net, count); |
|
|
|
connected_layer *layer = parse_connected(options, &net, count); |
|
|
|
net.types[count] = CONNECTED; |
|
|
|
net.types[count] = CONNECTED; |
|
|
|
net.layers[count] = layer; |
|
|
|
net.layers[count] = layer; |
|
|
|
net.batch = layer->batch; |
|
|
|
|
|
|
|
}else if(is_softmax(s)){ |
|
|
|
}else if(is_softmax(s)){ |
|
|
|
softmax_layer *layer = parse_softmax(options, net, count); |
|
|
|
softmax_layer *layer = parse_softmax(options, &net, count); |
|
|
|
net.types[count] = SOFTMAX; |
|
|
|
net.types[count] = SOFTMAX; |
|
|
|
net.layers[count] = layer; |
|
|
|
net.layers[count] = layer; |
|
|
|
net.batch = layer->batch; |
|
|
|
|
|
|
|
}else if(is_maxpool(s)){ |
|
|
|
}else if(is_maxpool(s)){ |
|
|
|
maxpool_layer *layer = parse_maxpool(options, net, count); |
|
|
|
maxpool_layer *layer = parse_maxpool(options, &net, count); |
|
|
|
net.types[count] = MAXPOOL; |
|
|
|
net.types[count] = MAXPOOL; |
|
|
|
net.layers[count] = layer; |
|
|
|
net.layers[count] = layer; |
|
|
|
net.batch = layer->batch; |
|
|
|
|
|
|
|
}else if(is_normalization(s)){ |
|
|
|
}else if(is_normalization(s)){ |
|
|
|
normalization_layer *layer = parse_normalization(options, net, count); |
|
|
|
normalization_layer *layer = parse_normalization(options, &net, count); |
|
|
|
net.types[count] = NORMALIZATION; |
|
|
|
net.types[count] = NORMALIZATION; |
|
|
|
net.layers[count] = layer; |
|
|
|
net.layers[count] = layer; |
|
|
|
net.batch = layer->batch; |
|
|
|
}else if(is_dropout(s)){ |
|
|
|
|
|
|
|
dropout_layer *layer = parse_dropout(options, &net, count); |
|
|
|
|
|
|
|
net.types[count] = DROPOUT; |
|
|
|
|
|
|
|
net.layers[count] = layer; |
|
|
|
}else{ |
|
|
|
}else{ |
|
|
|
fprintf(stderr, "Type not recognized: %s\n", s->type); |
|
|
|
fprintf(stderr, "Type not recognized: %s\n", s->type); |
|
|
|
} |
|
|
|
} |
|
|
@ -243,6 +305,10 @@ int is_maxpool(section *s) |
|
|
|
return (strcmp(s->type, "[max]")==0 |
|
|
|
return (strcmp(s->type, "[max]")==0 |
|
|
|
|| strcmp(s->type, "[maxpool]")==0); |
|
|
|
|| strcmp(s->type, "[maxpool]")==0); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
int is_dropout(section *s) |
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
return (strcmp(s->type, "[dropout]")==0); |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
int is_softmax(section *s) |
|
|
|
int is_softmax(section *s) |
|
|
|
{ |
|
|
|
{ |
|
|
@ -308,3 +374,120 @@ list *read_cfg(char *filename) |
|
|
|
return sections; |
|
|
|
return sections; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void print_convolutional_cfg(FILE *fp, convolutional_layer *l, network net, int count) |
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
int i; |
|
|
|
|
|
|
|
fprintf(fp, "[convolutional]\n"); |
|
|
|
|
|
|
|
if(count == 0) { |
|
|
|
|
|
|
|
fprintf(fp, "batch=%d\n" |
|
|
|
|
|
|
|
"height=%d\n" |
|
|
|
|
|
|
|
"width=%d\n" |
|
|
|
|
|
|
|
"channels=%d\n" |
|
|
|
|
|
|
|
"learning_rate=%g\n" |
|
|
|
|
|
|
|
"momentum=%g\n" |
|
|
|
|
|
|
|
"decay=%g\n", |
|
|
|
|
|
|
|
l->batch,l->h, l->w, l->c, l->learning_rate, l->momentum, l->decay); |
|
|
|
|
|
|
|
} else { |
|
|
|
|
|
|
|
if(l->learning_rate != net.learning_rate) |
|
|
|
|
|
|
|
fprintf(fp, "learning_rate=%g\n", l->learning_rate); |
|
|
|
|
|
|
|
if(l->momentum != net.momentum) |
|
|
|
|
|
|
|
fprintf(fp, "momentum=%g\n", l->momentum); |
|
|
|
|
|
|
|
if(l->decay != net.decay) |
|
|
|
|
|
|
|
fprintf(fp, "decay=%g\n", l->decay); |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
fprintf(fp, "filters=%d\n" |
|
|
|
|
|
|
|
"size=%d\n" |
|
|
|
|
|
|
|
"stride=%d\n" |
|
|
|
|
|
|
|
"pad=%d\n" |
|
|
|
|
|
|
|
"activation=%s\n", |
|
|
|
|
|
|
|
l->n, l->size, l->stride, l->pad, |
|
|
|
|
|
|
|
get_activation_string(l->activation)); |
|
|
|
|
|
|
|
fprintf(fp, "biases="); |
|
|
|
|
|
|
|
for(i = 0; i < l->n; ++i) fprintf(fp, "%g,", l->biases[i]); |
|
|
|
|
|
|
|
fprintf(fp, "\n"); |
|
|
|
|
|
|
|
fprintf(fp, "weights="); |
|
|
|
|
|
|
|
for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]); |
|
|
|
|
|
|
|
fprintf(fp, "\n\n"); |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
void print_connected_cfg(FILE *fp, connected_layer *l, network net, int count) |
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
int i; |
|
|
|
|
|
|
|
fprintf(fp, "[connected]\n"); |
|
|
|
|
|
|
|
if(count == 0){ |
|
|
|
|
|
|
|
fprintf(fp, "batch=%d\n" |
|
|
|
|
|
|
|
"input=%d\n" |
|
|
|
|
|
|
|
"learning_rate=%g\n" |
|
|
|
|
|
|
|
"momentum=%g\n" |
|
|
|
|
|
|
|
"decay=%g\n", |
|
|
|
|
|
|
|
l->batch, l->inputs, l->learning_rate, l->momentum, l->decay); |
|
|
|
|
|
|
|
} else { |
|
|
|
|
|
|
|
if(l->learning_rate != net.learning_rate) |
|
|
|
|
|
|
|
fprintf(fp, "learning_rate=%g\n", l->learning_rate); |
|
|
|
|
|
|
|
if(l->momentum != net.momentum) |
|
|
|
|
|
|
|
fprintf(fp, "momentum=%g\n", l->momentum); |
|
|
|
|
|
|
|
if(l->decay != net.decay) |
|
|
|
|
|
|
|
fprintf(fp, "decay=%g\n", l->decay); |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
fprintf(fp, "output=%d\n" |
|
|
|
|
|
|
|
"activation=%s\n", |
|
|
|
|
|
|
|
l->outputs, |
|
|
|
|
|
|
|
get_activation_string(l->activation)); |
|
|
|
|
|
|
|
fprintf(fp, "data="); |
|
|
|
|
|
|
|
for(i = 0; i < l->outputs; ++i) fprintf(fp, "%g,", l->biases[i]); |
|
|
|
|
|
|
|
for(i = 0; i < l->inputs*l->outputs; ++i) fprintf(fp, "%g,", l->weights[i]); |
|
|
|
|
|
|
|
fprintf(fp, "\n\n"); |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void print_maxpool_cfg(FILE *fp, maxpool_layer *l, network net, int count) |
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
fprintf(fp, "[maxpool]\n"); |
|
|
|
|
|
|
|
if(count == 0) fprintf(fp, "batch=%d\n" |
|
|
|
|
|
|
|
"height=%d\n" |
|
|
|
|
|
|
|
"width=%d\n" |
|
|
|
|
|
|
|
"channels=%d\n", |
|
|
|
|
|
|
|
l->batch,l->h, l->w, l->c); |
|
|
|
|
|
|
|
fprintf(fp, "size=%d\nstride=%d\n\n", l->size, l->stride); |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void print_normalization_cfg(FILE *fp, normalization_layer *l, network net, int count) |
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
fprintf(fp, "[localresponsenormalization]\n"); |
|
|
|
|
|
|
|
if(count == 0) fprintf(fp, "batch=%d\n" |
|
|
|
|
|
|
|
"height=%d\n" |
|
|
|
|
|
|
|
"width=%d\n" |
|
|
|
|
|
|
|
"channels=%d\n", |
|
|
|
|
|
|
|
l->batch,l->h, l->w, l->c); |
|
|
|
|
|
|
|
fprintf(fp, "size=%d\n" |
|
|
|
|
|
|
|
"alpha=%g\n" |
|
|
|
|
|
|
|
"beta=%g\n" |
|
|
|
|
|
|
|
"kappa=%g\n\n", l->size, l->alpha, l->beta, l->kappa); |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void print_softmax_cfg(FILE *fp, softmax_layer *l, network net, int count) |
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
fprintf(fp, "[softmax]\n"); |
|
|
|
|
|
|
|
if(count == 0) fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs); |
|
|
|
|
|
|
|
fprintf(fp, "\n"); |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void save_network(network net, char *filename) |
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
FILE *fp = fopen(filename, "w"); |
|
|
|
|
|
|
|
if(!fp) file_error(filename); |
|
|
|
|
|
|
|
int i; |
|
|
|
|
|
|
|
for(i = 0; i < net.n; ++i) |
|
|
|
|
|
|
|
{ |
|
|
|
|
|
|
|
if(net.types[i] == CONVOLUTIONAL) |
|
|
|
|
|
|
|
print_convolutional_cfg(fp, (convolutional_layer *)net.layers[i], net, i); |
|
|
|
|
|
|
|
else if(net.types[i] == CONNECTED) |
|
|
|
|
|
|
|
print_connected_cfg(fp, (connected_layer *)net.layers[i], net, i); |
|
|
|
|
|
|
|
else if(net.types[i] == MAXPOOL) |
|
|
|
|
|
|
|
print_maxpool_cfg(fp, (maxpool_layer *)net.layers[i], net, i); |
|
|
|
|
|
|
|
else if(net.types[i] == NORMALIZATION) |
|
|
|
|
|
|
|
print_normalization_cfg(fp, (normalization_layer *)net.layers[i], net, i); |
|
|
|
|
|
|
|
else if(net.types[i] == SOFTMAX) |
|
|
|
|
|
|
|
print_softmax_cfg(fp, (softmax_layer *)net.layers[i], net, i); |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
fclose(fp); |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|