|
|
|
@ -18,18 +18,18 @@ |
|
|
|
|
|
|
|
|
|
void test_convolve() |
|
|
|
|
{ |
|
|
|
|
image dog = load_image("dog.jpg",300,400); |
|
|
|
|
printf("dog channels %d\n", dog.c); |
|
|
|
|
image kernel = make_random_image(3,3,dog.c); |
|
|
|
|
image edge = make_image(dog.h, dog.w, 1); |
|
|
|
|
int i; |
|
|
|
|
clock_t start = clock(), end; |
|
|
|
|
for(i = 0; i < 1000; ++i){ |
|
|
|
|
convolve(dog, kernel, 1, 0, edge, 1); |
|
|
|
|
} |
|
|
|
|
end = clock(); |
|
|
|
|
printf("Convolutions: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC); |
|
|
|
|
show_image_layers(edge, "Test Convolve"); |
|
|
|
|
image dog = load_image("dog.jpg",300,400); |
|
|
|
|
printf("dog channels %d\n", dog.c); |
|
|
|
|
image kernel = make_random_image(3,3,dog.c); |
|
|
|
|
image edge = make_image(dog.h, dog.w, 1); |
|
|
|
|
int i; |
|
|
|
|
clock_t start = clock(), end; |
|
|
|
|
for(i = 0; i < 1000; ++i){ |
|
|
|
|
convolve(dog, kernel, 1, 0, edge, 1); |
|
|
|
|
} |
|
|
|
|
end = clock(); |
|
|
|
|
printf("Convolutions: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC); |
|
|
|
|
show_image_layers(edge, "Test Convolve"); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#ifdef GPU |
|
|
|
@ -37,11 +37,11 @@ void test_convolve() |
|
|
|
|
void test_convolutional_layer() |
|
|
|
|
{ |
|
|
|
|
int i; |
|
|
|
|
image dog = load_image("data/dog.jpg",224,224); |
|
|
|
|
network net = parse_network_cfg("cfg/convolutional.cfg"); |
|
|
|
|
// data test = load_cifar10_data("data/cifar10/test_batch.bin");
|
|
|
|
|
// float *X = calloc(net.batch*test.X.cols, sizeof(float));
|
|
|
|
|
// float *y = calloc(net.batch*test.y.cols, sizeof(float));
|
|
|
|
|
image dog = load_image("data/dog.jpg",224,224); |
|
|
|
|
network net = parse_network_cfg("cfg/convolutional.cfg"); |
|
|
|
|
// data test = load_cifar10_data("data/cifar10/test_batch.bin");
|
|
|
|
|
// float *X = calloc(net.batch*test.X.cols, sizeof(float));
|
|
|
|
|
// float *y = calloc(net.batch*test.y.cols, sizeof(float));
|
|
|
|
|
int in_size = get_network_input_size(net)*net.batch; |
|
|
|
|
int del_size = get_network_output_size_layer(net, 0)*net.batch; |
|
|
|
|
int size = get_network_output_size(net)*net.batch; |
|
|
|
@ -50,7 +50,7 @@ void test_convolutional_layer() |
|
|
|
|
for(i = 0; i < in_size; ++i){ |
|
|
|
|
X[i] = dog.data[i%get_network_input_size(net)]; |
|
|
|
|
} |
|
|
|
|
// get_batch(test, net.batch, X, y);
|
|
|
|
|
// get_batch(test, net.batch, X, y);
|
|
|
|
|
clock_t start, end; |
|
|
|
|
cl_mem input_cl = cl_make_array(X, in_size); |
|
|
|
|
cl_mem truth_cl = cl_make_array(y, size); |
|
|
|
@ -73,41 +73,41 @@ void test_convolutional_layer() |
|
|
|
|
float *gpu_del = calloc(del_size, sizeof(float)); |
|
|
|
|
memcpy(gpu_del, get_network_delta_layer(net, 0), del_size*sizeof(float)); |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
start = clock(); |
|
|
|
|
forward_network(net, X, y, 1); |
|
|
|
|
backward_network(net, X); |
|
|
|
|
float cpu_cost = get_network_cost(net); |
|
|
|
|
end = clock(); |
|
|
|
|
float cpu_sec = (float)(end-start)/CLOCKS_PER_SEC; |
|
|
|
|
float *cpu_out = calloc(size, sizeof(float)); |
|
|
|
|
memcpy(cpu_out, get_network_output(net), size*sizeof(float)); |
|
|
|
|
float *cpu_del = calloc(del_size, sizeof(float)); |
|
|
|
|
memcpy(cpu_del, get_network_delta_layer(net, 0), del_size*sizeof(float)); |
|
|
|
|
|
|
|
|
|
float sum = 0; |
|
|
|
|
float del_sum = 0; |
|
|
|
|
for(i = 0; i < size; ++i) sum += pow(gpu_out[i] - cpu_out[i], 2); |
|
|
|
|
for(i = 0; i < del_size; ++i) { |
|
|
|
|
//printf("%f %f\n", cpu_del[i], gpu_del[i]);
|
|
|
|
|
del_sum += pow(cpu_del[i] - gpu_del[i], 2); |
|
|
|
|
/*
|
|
|
|
|
start = clock(); |
|
|
|
|
forward_network(net, X, y, 1); |
|
|
|
|
backward_network(net, X); |
|
|
|
|
float cpu_cost = get_network_cost(net); |
|
|
|
|
end = clock(); |
|
|
|
|
float cpu_sec = (float)(end-start)/CLOCKS_PER_SEC; |
|
|
|
|
float *cpu_out = calloc(size, sizeof(float)); |
|
|
|
|
memcpy(cpu_out, get_network_output(net), size*sizeof(float)); |
|
|
|
|
float *cpu_del = calloc(del_size, sizeof(float)); |
|
|
|
|
memcpy(cpu_del, get_network_delta_layer(net, 0), del_size*sizeof(float)); |
|
|
|
|
|
|
|
|
|
float sum = 0; |
|
|
|
|
float del_sum = 0; |
|
|
|
|
for(i = 0; i < size; ++i) sum += pow(gpu_out[i] - cpu_out[i], 2); |
|
|
|
|
for(i = 0; i < del_size; ++i) { |
|
|
|
|
//printf("%f %f\n", cpu_del[i], gpu_del[i]);
|
|
|
|
|
del_sum += pow(cpu_del[i] - gpu_del[i], 2); |
|
|
|
|
} |
|
|
|
|
printf("GPU cost: %f, CPU cost: %f\n", gpu_cost, cpu_cost); |
|
|
|
|
printf("gpu: %f sec, cpu: %f sec, diff: %f, delta diff: %f, size: %d\n", gpu_sec, cpu_sec, sum, del_sum, size); |
|
|
|
|
*/ |
|
|
|
|
*/ |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void test_col2im() |
|
|
|
|
{ |
|
|
|
|
float col[] = {1,2,1,2, |
|
|
|
|
1,2,1,2, |
|
|
|
|
1,2,1,2, |
|
|
|
|
1,2,1,2, |
|
|
|
|
1,2,1,2, |
|
|
|
|
1,2,1,2, |
|
|
|
|
1,2,1,2, |
|
|
|
|
1,2,1,2, |
|
|
|
|
1,2,1,2}; |
|
|
|
|
1,2,1,2, |
|
|
|
|
1,2,1,2, |
|
|
|
|
1,2,1,2, |
|
|
|
|
1,2,1,2, |
|
|
|
|
1,2,1,2, |
|
|
|
|
1,2,1,2, |
|
|
|
|
1,2,1,2, |
|
|
|
|
1,2,1,2}; |
|
|
|
|
float im[16] = {0}; |
|
|
|
|
int batch = 1; |
|
|
|
|
int channels = 1; |
|
|
|
@ -117,289 +117,304 @@ void test_col2im() |
|
|
|
|
int stride = 1; |
|
|
|
|
int pad = 0; |
|
|
|
|
col2im_gpu(col, batch, |
|
|
|
|
channels, height, width, |
|
|
|
|
ksize, stride, pad, im); |
|
|
|
|
channels, height, width, |
|
|
|
|
ksize, stride, pad, im); |
|
|
|
|
int i; |
|
|
|
|
for(i = 0; i < 16; ++i)printf("%f,", im[i]); |
|
|
|
|
printf("\n"); |
|
|
|
|
/*
|
|
|
|
|
float data_im[] = { |
|
|
|
|
1,2,3,4, |
|
|
|
|
5,6,7,8, |
|
|
|
|
9,10,11,12 |
|
|
|
|
}; |
|
|
|
|
float data_col[18] = {0}; |
|
|
|
|
im2col_cpu(data_im, batch, |
|
|
|
|
channels, height, width, |
|
|
|
|
ksize, stride, pad, data_col) ; |
|
|
|
|
for(i = 0; i < 18; ++i)printf("%f,", data_col[i]); |
|
|
|
|
printf("\n"); |
|
|
|
|
*/ |
|
|
|
|
float data_im[] = { |
|
|
|
|
1,2,3,4, |
|
|
|
|
5,6,7,8, |
|
|
|
|
9,10,11,12 |
|
|
|
|
}; |
|
|
|
|
float data_col[18] = {0}; |
|
|
|
|
im2col_cpu(data_im, batch, |
|
|
|
|
channels, height, width, |
|
|
|
|
ksize, stride, pad, data_col) ; |
|
|
|
|
for(i = 0; i < 18; ++i)printf("%f,", data_col[i]); |
|
|
|
|
printf("\n"); |
|
|
|
|
*/ |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
void test_convolve_matrix() |
|
|
|
|
{ |
|
|
|
|
image dog = load_image("dog.jpg",300,400); |
|
|
|
|
printf("dog channels %d\n", dog.c); |
|
|
|
|
|
|
|
|
|
int size = 11; |
|
|
|
|
int stride = 4; |
|
|
|
|
int n = 40; |
|
|
|
|
float *filters = make_random_image(size, size, dog.c*n).data; |
|
|
|
|
|
|
|
|
|
int mw = ((dog.h-size)/stride+1)*((dog.w-size)/stride+1); |
|
|
|
|
int mh = (size*size*dog.c); |
|
|
|
|
float *matrix = calloc(mh*mw, sizeof(float)); |
|
|
|
|
|
|
|
|
|
image edge = make_image((dog.h-size)/stride+1, (dog.w-size)/stride+1, n); |
|
|
|
|
|
|
|
|
|
int i; |
|
|
|
|
clock_t start = clock(), end; |
|
|
|
|
for(i = 0; i < 1000; ++i){ |
|
|
|
|
im2col_cpu(dog.data,1, dog.c, dog.h, dog.w, size, stride, 0, matrix); |
|
|
|
|
gemm(0,0,n,mw,mh,1,filters,mh,matrix,mw,1,edge.data,mw); |
|
|
|
|
} |
|
|
|
|
end = clock(); |
|
|
|
|
printf("Convolutions: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC); |
|
|
|
|
show_image_layers(edge, "Test Convolve"); |
|
|
|
|
cvWaitKey(0); |
|
|
|
|
image dog = load_image("dog.jpg",300,400); |
|
|
|
|
printf("dog channels %d\n", dog.c); |
|
|
|
|
|
|
|
|
|
int size = 11; |
|
|
|
|
int stride = 4; |
|
|
|
|
int n = 40; |
|
|
|
|
float *filters = make_random_image(size, size, dog.c*n).data; |
|
|
|
|
|
|
|
|
|
int mw = ((dog.h-size)/stride+1)*((dog.w-size)/stride+1); |
|
|
|
|
int mh = (size*size*dog.c); |
|
|
|
|
float *matrix = calloc(mh*mw, sizeof(float)); |
|
|
|
|
|
|
|
|
|
image edge = make_image((dog.h-size)/stride+1, (dog.w-size)/stride+1, n); |
|
|
|
|
|
|
|
|
|
int i; |
|
|
|
|
clock_t start = clock(), end; |
|
|
|
|
for(i = 0; i < 1000; ++i){ |
|
|
|
|
im2col_cpu(dog.data,1, dog.c, dog.h, dog.w, size, stride, 0, matrix); |
|
|
|
|
gemm(0,0,n,mw,mh,1,filters,mh,matrix,mw,1,edge.data,mw); |
|
|
|
|
} |
|
|
|
|
end = clock(); |
|
|
|
|
printf("Convolutions: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC); |
|
|
|
|
show_image_layers(edge, "Test Convolve"); |
|
|
|
|
cvWaitKey(0); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void test_color() |
|
|
|
|
{ |
|
|
|
|
image dog = load_image("test_color.png", 300, 400); |
|
|
|
|
show_image_layers(dog, "Test Color"); |
|
|
|
|
image dog = load_image("test_color.png", 300, 400); |
|
|
|
|
show_image_layers(dog, "Test Color"); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void verify_convolutional_layer() |
|
|
|
|
{ |
|
|
|
|
srand(0); |
|
|
|
|
int i; |
|
|
|
|
int n = 1; |
|
|
|
|
int stride = 1; |
|
|
|
|
int size = 3; |
|
|
|
|
float eps = .00000001; |
|
|
|
|
image test = make_random_image(5,5, 1); |
|
|
|
|
convolutional_layer layer = *make_convolutional_layer(1,test.h,test.w,test.c, n, size, stride, 0, RELU,0,0,0); |
|
|
|
|
image out = get_convolutional_image(layer); |
|
|
|
|
float **jacobian = calloc(test.h*test.w*test.c, sizeof(float)); |
|
|
|
|
|
|
|
|
|
forward_convolutional_layer(layer, test.data); |
|
|
|
|
image base = copy_image(out); |
|
|
|
|
|
|
|
|
|
for(i = 0; i < test.h*test.w*test.c; ++i){ |
|
|
|
|
test.data[i] += eps; |
|
|
|
|
forward_convolutional_layer(layer, test.data); |
|
|
|
|
image partial = copy_image(out); |
|
|
|
|
subtract_image(partial, base); |
|
|
|
|
scale_image(partial, 1/eps); |
|
|
|
|
jacobian[i] = partial.data; |
|
|
|
|
test.data[i] -= eps; |
|
|
|
|
} |
|
|
|
|
float **jacobian2 = calloc(out.h*out.w*out.c, sizeof(float)); |
|
|
|
|
image in_delta = make_image(test.h, test.w, test.c); |
|
|
|
|
image out_delta = get_convolutional_delta(layer); |
|
|
|
|
for(i = 0; i < out.h*out.w*out.c; ++i){ |
|
|
|
|
out_delta.data[i] = 1; |
|
|
|
|
backward_convolutional_layer(layer, in_delta.data); |
|
|
|
|
image partial = copy_image(in_delta); |
|
|
|
|
jacobian2[i] = partial.data; |
|
|
|
|
out_delta.data[i] = 0; |
|
|
|
|
} |
|
|
|
|
int j; |
|
|
|
|
float *j1 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(float)); |
|
|
|
|
float *j2 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(float)); |
|
|
|
|
for(i = 0; i < test.h*test.w*test.c; ++i){ |
|
|
|
|
for(j =0 ; j < out.h*out.w*out.c; ++j){ |
|
|
|
|
j1[i*out.h*out.w*out.c + j] = jacobian[i][j]; |
|
|
|
|
j2[i*out.h*out.w*out.c + j] = jacobian2[j][i]; |
|
|
|
|
printf("%f %f\n", jacobian[i][j], jacobian2[j][i]); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
image mj1 = float_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j1); |
|
|
|
|
image mj2 = float_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j2); |
|
|
|
|
printf("%f %f\n", avg_image_layer(mj1,0), avg_image_layer(mj2,0)); |
|
|
|
|
show_image(mj1, "forward jacobian"); |
|
|
|
|
show_image(mj2, "backward jacobian"); |
|
|
|
|
srand(0); |
|
|
|
|
int i; |
|
|
|
|
int n = 1; |
|
|
|
|
int stride = 1; |
|
|
|
|
int size = 3; |
|
|
|
|
float eps = .00000001; |
|
|
|
|
image test = make_random_image(5,5, 1); |
|
|
|
|
convolutional_layer layer = *make_convolutional_layer(1,test.h,test.w,test.c, n, size, stride, 0, RELU,0,0,0); |
|
|
|
|
image out = get_convolutional_image(layer); |
|
|
|
|
float **jacobian = calloc(test.h*test.w*test.c, sizeof(float)); |
|
|
|
|
|
|
|
|
|
forward_convolutional_layer(layer, test.data); |
|
|
|
|
image base = copy_image(out); |
|
|
|
|
|
|
|
|
|
for(i = 0; i < test.h*test.w*test.c; ++i){ |
|
|
|
|
test.data[i] += eps; |
|
|
|
|
forward_convolutional_layer(layer, test.data); |
|
|
|
|
image partial = copy_image(out); |
|
|
|
|
subtract_image(partial, base); |
|
|
|
|
scale_image(partial, 1/eps); |
|
|
|
|
jacobian[i] = partial.data; |
|
|
|
|
test.data[i] -= eps; |
|
|
|
|
} |
|
|
|
|
float **jacobian2 = calloc(out.h*out.w*out.c, sizeof(float)); |
|
|
|
|
image in_delta = make_image(test.h, test.w, test.c); |
|
|
|
|
image out_delta = get_convolutional_delta(layer); |
|
|
|
|
for(i = 0; i < out.h*out.w*out.c; ++i){ |
|
|
|
|
out_delta.data[i] = 1; |
|
|
|
|
backward_convolutional_layer(layer, in_delta.data); |
|
|
|
|
image partial = copy_image(in_delta); |
|
|
|
|
jacobian2[i] = partial.data; |
|
|
|
|
out_delta.data[i] = 0; |
|
|
|
|
} |
|
|
|
|
int j; |
|
|
|
|
float *j1 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(float)); |
|
|
|
|
float *j2 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(float)); |
|
|
|
|
for(i = 0; i < test.h*test.w*test.c; ++i){ |
|
|
|
|
for(j =0 ; j < out.h*out.w*out.c; ++j){ |
|
|
|
|
j1[i*out.h*out.w*out.c + j] = jacobian[i][j]; |
|
|
|
|
j2[i*out.h*out.w*out.c + j] = jacobian2[j][i]; |
|
|
|
|
printf("%f %f\n", jacobian[i][j], jacobian2[j][i]); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
image mj1 = float_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j1); |
|
|
|
|
image mj2 = float_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j2); |
|
|
|
|
printf("%f %f\n", avg_image_layer(mj1,0), avg_image_layer(mj2,0)); |
|
|
|
|
show_image(mj1, "forward jacobian"); |
|
|
|
|
show_image(mj2, "backward jacobian"); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void test_load() |
|
|
|
|
{ |
|
|
|
|
image dog = load_image("dog.jpg", 300, 400); |
|
|
|
|
show_image(dog, "Test Load"); |
|
|
|
|
show_image_layers(dog, "Test Load"); |
|
|
|
|
image dog = load_image("dog.jpg", 300, 400); |
|
|
|
|
show_image(dog, "Test Load"); |
|
|
|
|
show_image_layers(dog, "Test Load"); |
|
|
|
|
} |
|
|
|
|
void test_upsample() |
|
|
|
|
{ |
|
|
|
|
image dog = load_image("dog.jpg", 300, 400); |
|
|
|
|
int n = 3; |
|
|
|
|
image up = make_image(n*dog.h, n*dog.w, dog.c); |
|
|
|
|
upsample_image(dog, n, up); |
|
|
|
|
show_image(up, "Test Upsample"); |
|
|
|
|
show_image_layers(up, "Test Upsample"); |
|
|
|
|
image dog = load_image("dog.jpg", 300, 400); |
|
|
|
|
int n = 3; |
|
|
|
|
image up = make_image(n*dog.h, n*dog.w, dog.c); |
|
|
|
|
upsample_image(dog, n, up); |
|
|
|
|
show_image(up, "Test Upsample"); |
|
|
|
|
show_image_layers(up, "Test Upsample"); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void test_rotate() |
|
|
|
|
{ |
|
|
|
|
int i; |
|
|
|
|
image dog = load_image("dog.jpg",300,400); |
|
|
|
|
clock_t start = clock(), end; |
|
|
|
|
for(i = 0; i < 1001; ++i){ |
|
|
|
|
rotate_image(dog); |
|
|
|
|
} |
|
|
|
|
end = clock(); |
|
|
|
|
printf("Rotations: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC); |
|
|
|
|
show_image(dog, "Test Rotate"); |
|
|
|
|
|
|
|
|
|
image random = make_random_image(3,3,3); |
|
|
|
|
show_image(random, "Test Rotate Random"); |
|
|
|
|
rotate_image(random); |
|
|
|
|
show_image(random, "Test Rotate Random"); |
|
|
|
|
rotate_image(random); |
|
|
|
|
show_image(random, "Test Rotate Random"); |
|
|
|
|
int i; |
|
|
|
|
image dog = load_image("dog.jpg",300,400); |
|
|
|
|
clock_t start = clock(), end; |
|
|
|
|
for(i = 0; i < 1001; ++i){ |
|
|
|
|
rotate_image(dog); |
|
|
|
|
} |
|
|
|
|
end = clock(); |
|
|
|
|
printf("Rotations: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC); |
|
|
|
|
show_image(dog, "Test Rotate"); |
|
|
|
|
|
|
|
|
|
image random = make_random_image(3,3,3); |
|
|
|
|
show_image(random, "Test Rotate Random"); |
|
|
|
|
rotate_image(random); |
|
|
|
|
show_image(random, "Test Rotate Random"); |
|
|
|
|
rotate_image(random); |
|
|
|
|
show_image(random, "Test Rotate Random"); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void test_parser() |
|
|
|
|
{ |
|
|
|
|
network net = parse_network_cfg("cfg/trained_imagenet.cfg"); |
|
|
|
|
network net = parse_network_cfg("cfg/trained_imagenet.cfg"); |
|
|
|
|
save_network(net, "cfg/trained_imagenet_smaller.cfg"); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void test_data() |
|
|
|
|
{ |
|
|
|
|
char *labels[] = {"cat","dog"}; |
|
|
|
|
data train = load_data_image_pathfile_random("train_paths.txt", 101,labels, 2, 300, 400); |
|
|
|
|
free_data(train); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void train_asirra() |
|
|
|
|
{ |
|
|
|
|
network net = parse_network_cfg("cfg/imagenet.cfg"); |
|
|
|
|
network net = parse_network_cfg("cfg/imagenet.cfg"); |
|
|
|
|
int imgs = 1000/net.batch+1; |
|
|
|
|
//imgs = 1;
|
|
|
|
|
srand(2222222); |
|
|
|
|
int i = 0; |
|
|
|
|
char *labels[] = {"cat","dog"}; |
|
|
|
|
srand(2222222); |
|
|
|
|
int i = 0; |
|
|
|
|
char *labels[] = {"cat","dog"}; |
|
|
|
|
|
|
|
|
|
list *plist = get_paths("data/assira/train.list"); |
|
|
|
|
char **paths = (char **)list_to_array(plist); |
|
|
|
|
int m = plist->size; |
|
|
|
|
free_list(plist); |
|
|
|
|
|
|
|
|
|
clock_t time; |
|
|
|
|
while(1){ |
|
|
|
|
i += 1; |
|
|
|
|
|
|
|
|
|
while(1){ |
|
|
|
|
i += 1; |
|
|
|
|
time=clock(); |
|
|
|
|
data train = load_data_image_pathfile_random("data/assira/train.list", imgs*net.batch, labels, 2, 256, 256); |
|
|
|
|
normalize_data_rows(train); |
|
|
|
|
data train = load_data_random(imgs*net.batch, paths, m, labels, 2, 256, 256); |
|
|
|
|
normalize_data_rows(train); |
|
|
|
|
printf("Loaded: %lf seconds\n", sec(clock()-time)); |
|
|
|
|
time=clock(); |
|
|
|
|
//float loss = train_network_data(net, train, imgs);
|
|
|
|
|
//float loss = train_network_data(net, train, imgs);
|
|
|
|
|
float loss = 0; |
|
|
|
|
printf("%d: %f, Time: %lf seconds\n", i*net.batch*imgs, loss, sec(clock()-time)); |
|
|
|
|
free_data(train); |
|
|
|
|
if(i%10==0){ |
|
|
|
|
char buff[256]; |
|
|
|
|
sprintf(buff, "cfg/asirra_backup_%d.cfg", i); |
|
|
|
|
save_network(net, buff); |
|
|
|
|
} |
|
|
|
|
//lr *= .99;
|
|
|
|
|
} |
|
|
|
|
printf("%d: %f, Time: %lf seconds\n", i*net.batch*imgs, loss, sec(clock()-time)); |
|
|
|
|
free_data(train); |
|
|
|
|
if(i%10==0){ |
|
|
|
|
char buff[256]; |
|
|
|
|
sprintf(buff, "cfg/asirra_backup_%d.cfg", i); |
|
|
|
|
save_network(net, buff); |
|
|
|
|
} |
|
|
|
|
//lr *= .99;
|
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void train_detection_net() |
|
|
|
|
{ |
|
|
|
|
float avg_loss = 1; |
|
|
|
|
//network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg");
|
|
|
|
|
network net = parse_network_cfg("cfg/detnet.cfg"); |
|
|
|
|
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
|
|
|
|
int imgs = 1000/net.batch+1; |
|
|
|
|
srand(time(0)); |
|
|
|
|
int i = 0; |
|
|
|
|
char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list"); |
|
|
|
|
list *plist = get_paths("/data/imagenet/cls.train.list"); |
|
|
|
|
char **paths = (char **)list_to_array(plist); |
|
|
|
|
printf("%d\n", plist->size); |
|
|
|
|
clock_t time; |
|
|
|
|
while(1){ |
|
|
|
|
i += 1; |
|
|
|
|
time=clock(); |
|
|
|
|
data train = load_data_random(imgs*net.batch, paths, plist->size, labels, 1000, 256, 256); |
|
|
|
|
//translate_data_rows(train, -144);
|
|
|
|
|
normalize_data_rows(train); |
|
|
|
|
printf("Loaded: %lf seconds\n", sec(clock()-time)); |
|
|
|
|
time=clock(); |
|
|
|
|
#ifdef GPU |
|
|
|
|
float loss = train_network_data_gpu(net, train, imgs); |
|
|
|
|
avg_loss = avg_loss*.9 + loss*.1; |
|
|
|
|
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs*net.batch); |
|
|
|
|
#endif |
|
|
|
|
free_data(train); |
|
|
|
|
if(i%10==0){ |
|
|
|
|
char buff[256]; |
|
|
|
|
sprintf(buff, "/home/pjreddie/imagenet_backup/imagenet_%d.cfg", i); |
|
|
|
|
save_network(net, buff); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void train_imagenet() |
|
|
|
|
{ |
|
|
|
|
float avg_loss = 1; |
|
|
|
|
//network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg");
|
|
|
|
|
network net = parse_network_cfg("cfg/imagenet.cfg"); |
|
|
|
|
//network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg");
|
|
|
|
|
network net = parse_network_cfg("cfg/alexnet.cfg"); |
|
|
|
|
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
|
|
|
|
int imgs = 1000/net.batch+1; |
|
|
|
|
srand(time(0)); |
|
|
|
|
int i = 0; |
|
|
|
|
srand(time(0)); |
|
|
|
|
int i = 0; |
|
|
|
|
char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list"); |
|
|
|
|
list *plist = get_paths("/data/imagenet/cls.train.list"); |
|
|
|
|
char **paths = (char **)list_to_array(plist); |
|
|
|
|
printf("%d\n", plist->size); |
|
|
|
|
clock_t time; |
|
|
|
|
while(1){ |
|
|
|
|
i += 1; |
|
|
|
|
while(1){ |
|
|
|
|
i += 1; |
|
|
|
|
time=clock(); |
|
|
|
|
data train = load_data_random(imgs*net.batch, paths, plist->size, labels, 1000, 256, 256); |
|
|
|
|
data train = load_data_random(imgs*net.batch, paths, plist->size, labels, 1000, 256, 256); |
|
|
|
|
//translate_data_rows(train, -144);
|
|
|
|
|
normalize_data_rows(train); |
|
|
|
|
printf("Loaded: %lf seconds\n", sec(clock()-time)); |
|
|
|
|
time=clock(); |
|
|
|
|
#ifdef GPU |
|
|
|
|
float loss = train_network_data_gpu(net, train, imgs); |
|
|
|
|
#ifdef GPU |
|
|
|
|
float loss = train_network_data_gpu(net, train, imgs); |
|
|
|
|
avg_loss = avg_loss*.9 + loss*.1; |
|
|
|
|
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs*net.batch); |
|
|
|
|
#endif |
|
|
|
|
free_data(train); |
|
|
|
|
if(i%10==0){ |
|
|
|
|
char buff[256]; |
|
|
|
|
sprintf(buff, "/home/pjreddie/imagenet_backup/imagenet_%d.cfg", i); |
|
|
|
|
save_network(net, buff); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs*net.batch); |
|
|
|
|
#endif |
|
|
|
|
free_data(train); |
|
|
|
|
if(i%10==0){ |
|
|
|
|
char buff[256]; |
|
|
|
|
sprintf(buff, "/home/pjreddie/imagenet_backup/imagenet_%d.cfg", i); |
|
|
|
|
save_network(net, buff); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void validate_imagenet(char *filename) |
|
|
|
|
{ |
|
|
|
|
int i; |
|
|
|
|
network net = parse_network_cfg(filename); |
|
|
|
|
srand(time(0)); |
|
|
|
|
network net = parse_network_cfg(filename); |
|
|
|
|
srand(time(0)); |
|
|
|
|
|
|
|
|
|
char **labels = get_labels("/home/pjreddie/data/imagenet/cls.val.labels.list"); |
|
|
|
|
char *path = "/home/pjreddie/data/imagenet/cls.val.list"; |
|
|
|
|
|
|
|
|
|
list *plist = get_paths("/home/pjreddie/data/imagenet/cls.val.list"); |
|
|
|
|
char **paths = (char **)list_to_array(plist); |
|
|
|
|
int m = plist->size; |
|
|
|
|
free_list(plist); |
|
|
|
|
|
|
|
|
|
clock_t time; |
|
|
|
|
float avg_acc = 0; |
|
|
|
|
int splits = 50; |
|
|
|
|
|
|
|
|
|
for(i = 0; i < splits; ++i){ |
|
|
|
|
time=clock(); |
|
|
|
|
data val = load_data_image_pathfile_part(path, i, splits, labels, 1000, 256, 256); |
|
|
|
|
char **part = paths+(i*m/splits); |
|
|
|
|
int num = (i+1)*m/splits - i*m/splits; |
|
|
|
|
data val = load_data(part, num, labels, 1000, 256, 256); |
|
|
|
|
normalize_data_rows(val); |
|
|
|
|
printf("Loaded: %d images in %lf seconds\n", val.X.rows, sec(clock()-time)); |
|
|
|
|
time=clock(); |
|
|
|
|
#ifdef GPU |
|
|
|
|
float acc = network_accuracy_gpu(net, val); |
|
|
|
|
avg_acc += acc; |
|
|
|
|
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, acc, avg_acc/(i+1), sec(clock()-time), val.X.rows); |
|
|
|
|
#endif |
|
|
|
|
free_data(val); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void train_imagenet_small() |
|
|
|
|
{ |
|
|
|
|
network net = parse_network_cfg("cfg/imagenet_small.cfg"); |
|
|
|
|
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
|
|
|
|
int imgs=1; |
|
|
|
|
srand(111222); |
|
|
|
|
int i = 0; |
|
|
|
|
char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list"); |
|
|
|
|
list *plist = get_paths("/data/imagenet/cls.train.list"); |
|
|
|
|
char **paths = (char **)list_to_array(plist); |
|
|
|
|
printf("%d\n", plist->size); |
|
|
|
|
clock_t time; |
|
|
|
|
|
|
|
|
|
i += 1; |
|
|
|
|
time=clock(); |
|
|
|
|
data train = load_data_random(imgs*net.batch, paths, plist->size, labels, 1000, 256, 256); |
|
|
|
|
normalize_data_rows(train); |
|
|
|
|
printf("Loaded: %lf seconds\n", sec(clock()-time)); |
|
|
|
|
time=clock(); |
|
|
|
|
#ifdef GPU |
|
|
|
|
float loss = train_network_data_gpu(net, train, imgs); |
|
|
|
|
printf("%d: %f, %lf seconds, %d images\n", i, loss, sec(clock()-time), i*imgs*net.batch); |
|
|
|
|
float acc = network_accuracy_gpu(net, val); |
|
|
|
|
avg_acc += acc; |
|
|
|
|
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, acc, avg_acc/(i+1), sec(clock()-time), val.X.rows); |
|
|
|
|
#endif |
|
|
|
|
free_data(train); |
|
|
|
|
char buff[256]; |
|
|
|
|
sprintf(buff, "/home/pjreddie/imagenet_backup/imagenet_backup_slower_larger_%d.cfg", i); |
|
|
|
|
save_network(net, buff); |
|
|
|
|
free_data(val); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void test_imagenet() |
|
|
|
|
{ |
|
|
|
|
network net = parse_network_cfg("cfg/imagenet_test.cfg"); |
|
|
|
|
network net = parse_network_cfg("cfg/imagenet_test.cfg"); |
|
|
|
|
//imgs=1;
|
|
|
|
|
srand(2222222); |
|
|
|
|
int i = 0; |
|
|
|
@ -431,32 +446,6 @@ void test_visualize(char *filename) |
|
|
|
|
visualize_network(net); |
|
|
|
|
cvWaitKey(0); |
|
|
|
|
} |
|
|
|
|
void test_full() |
|
|
|
|
{ |
|
|
|
|
network net = parse_network_cfg("cfg/backup_1300.cfg"); |
|
|
|
|
srand(2222222); |
|
|
|
|
int i,j; |
|
|
|
|
int total = 100; |
|
|
|
|
char *labels[] = {"cat","dog"}; |
|
|
|
|
FILE *fp = fopen("preds.txt","w"); |
|
|
|
|
for(i = 0; i < total; ++i){ |
|
|
|
|
visualize_network(net); |
|
|
|
|
cvWaitKey(100); |
|
|
|
|
data test = load_data_image_pathfile_part("data/assira/test.list", i, total, labels, 2, 256, 256); |
|
|
|
|
image im = float_to_image(256, 256, 3,test.X.vals[0]); |
|
|
|
|
show_image(im, "input"); |
|
|
|
|
cvWaitKey(100); |
|
|
|
|
normalize_data_rows(test); |
|
|
|
|
for(j = 0; j < test.X.rows; ++j){ |
|
|
|
|
float *x = test.X.vals[j]; |
|
|
|
|
forward_network(net, x, 0, 0); |
|
|
|
|
int class = get_predicted_class_network(net); |
|
|
|
|
fprintf(fp, "%d\n", class); |
|
|
|
|
} |
|
|
|
|
free_data(test); |
|
|
|
|
} |
|
|
|
|
fclose(fp); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void test_cifar10() |
|
|
|
|
{ |
|
|
|
@ -675,88 +664,74 @@ void flip_network() |
|
|
|
|
save_network(net, "cfg/voc_imagenet_rev.cfg"); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void tune_VOC() |
|
|
|
|
{ |
|
|
|
|
network net = parse_network_cfg("cfg/voc_start.cfg"); |
|
|
|
|
srand(2222222); |
|
|
|
|
int i = 20; |
|
|
|
|
char *labels[] = {"aeroplane","bicycle","bird","boat","bottle","bus","car","cat","chair","cow","diningtable","dog","horse","motorbike","person","pottedplant","sheep","sofa","train","tvmonitor"}; |
|
|
|
|
float lr = .000005; |
|
|
|
|
float momentum = .9; |
|
|
|
|
float decay = 0.0001; |
|
|
|
|
while(i++ < 1000 || 1){ |
|
|
|
|
data train = load_data_image_pathfile_random("/home/pjreddie/VOC2012/trainval_paths.txt", 10, labels, 20, 256, 256); |
|
|
|
|
|
|
|
|
|
image im = float_to_image(256, 256, 3,train.X.vals[0]); |
|
|
|
|
show_image(im, "input"); |
|
|
|
|
visualize_network(net); |
|
|
|
|
cvWaitKey(100); |
|
|
|
|
|
|
|
|
|
translate_data_rows(train, -144); |
|
|
|
|
clock_t start = clock(), end; |
|
|
|
|
float loss = train_network_sgd(net, train, 10); |
|
|
|
|
end = clock(); |
|
|
|
|
printf("%d: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", i, loss, (float)(end-start)/CLOCKS_PER_SEC, lr, momentum, decay); |
|
|
|
|
free_data(train); |
|
|
|
|
/*
|
|
|
|
|
if(i%10==0){ |
|
|
|
|
char buff[256]; |
|
|
|
|
sprintf(buff, "/home/pjreddie/voc_cfg/voc_ramp_%d.cfg", i); |
|
|
|
|
save_network(net, buff); |
|
|
|
|
} |
|
|
|
|
*/ |
|
|
|
|
//lr *= .99;
|
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
int voc_size(int x) |
|
|
|
|
{ |
|
|
|
|
x = x-1+3; |
|
|
|
|
x = x-1+3; |
|
|
|
|
x = x-1+3; |
|
|
|
|
x = (x-1)*2+1; |
|
|
|
|
x = x-1+5; |
|
|
|
|
x = (x-1)*2+1; |
|
|
|
|
x = (x-1)*4+11; |
|
|
|
|
return x; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
image features_output_size(network net, IplImage *src, int outh, int outw) |
|
|
|
|
void visualize_cat() |
|
|
|
|
{ |
|
|
|
|
int h = voc_size(outh); |
|
|
|
|
int w = voc_size(outw); |
|
|
|
|
fprintf(stderr, "%d %d\n", h, w); |
|
|
|
|
|
|
|
|
|
IplImage *sized = cvCreateImage(cvSize(w,h), src->depth, src->nChannels); |
|
|
|
|
cvResize(src, sized, CV_INTER_LINEAR); |
|
|
|
|
image im = ipl_to_image(sized); |
|
|
|
|
//normalize_array(im.data, im.h*im.w*im.c);
|
|
|
|
|
translate_image(im, -144); |
|
|
|
|
network net = parse_network_cfg("cfg/voc_imagenet.cfg"); |
|
|
|
|
image im = load_image("data/cat.png", 0, 0); |
|
|
|
|
printf("Processing %dx%d image\n", im.h, im.w); |
|
|
|
|
resize_network(net, im.h, im.w, im.c); |
|
|
|
|
forward_network(net, im.data, 0, 0); |
|
|
|
|
image out = get_network_image(net); |
|
|
|
|
free_image(im); |
|
|
|
|
cvReleaseImage(&sized); |
|
|
|
|
return copy_image(out); |
|
|
|
|
|
|
|
|
|
visualize_network(net); |
|
|
|
|
cvWaitKey(0); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void features_VOC_image_size(char *image_path, int h, int w) |
|
|
|
|
|
|
|
|
|
void test_gpu_net() |
|
|
|
|
{ |
|
|
|
|
int j; |
|
|
|
|
network net = parse_network_cfg("cfg/voc_imagenet.cfg"); |
|
|
|
|
fprintf(stderr, "%s\n", image_path); |
|
|
|
|
srand(222222); |
|
|
|
|
network net = parse_network_cfg("cfg/nist.cfg"); |
|
|
|
|
data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10); |
|
|
|
|
data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10); |
|
|
|
|
translate_data_rows(train, -144); |
|
|
|
|
translate_data_rows(test, -144); |
|
|
|
|
int count = 0; |
|
|
|
|
int iters = 1000/net.batch; |
|
|
|
|
while(++count <= 5){ |
|
|
|
|
clock_t start = clock(), end; |
|
|
|
|
float loss = train_network_sgd(net, train, iters); |
|
|
|
|
end = clock(); |
|
|
|
|
float test_acc = network_accuracy(net, test); |
|
|
|
|
printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay); |
|
|
|
|
} |
|
|
|
|
#ifdef GPU |
|
|
|
|
count = 0; |
|
|
|
|
srand(222222); |
|
|
|
|
net = parse_network_cfg("cfg/nist.cfg"); |
|
|
|
|
while(++count <= 5){ |
|
|
|
|
clock_t start = clock(), end; |
|
|
|
|
float loss = train_network_sgd_gpu(net, train, iters); |
|
|
|
|
end = clock(); |
|
|
|
|
float test_acc = network_accuracy(net, test); |
|
|
|
|
printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay); |
|
|
|
|
} |
|
|
|
|
#endif |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
IplImage* src = 0; |
|
|
|
|
if( (src = cvLoadImage(image_path,-1)) == 0 ) file_error(image_path); |
|
|
|
|
image out = features_output_size(net, src, h, w); |
|
|
|
|
for(j = 0; j < out.c*out.h*out.w; ++j){ |
|
|
|
|
if(j != 0) printf(","); |
|
|
|
|
printf("%g", out.data[j]); |
|
|
|
|
|
|
|
|
|
int main(int argc, char *argv[]) |
|
|
|
|
{ |
|
|
|
|
if(argc < 2){ |
|
|
|
|
fprintf(stderr, "usage: %s <function>\n", argv[0]); |
|
|
|
|
return 0; |
|
|
|
|
} |
|
|
|
|
printf("\n"); |
|
|
|
|
free_image(out); |
|
|
|
|
cvReleaseImage(&src); |
|
|
|
|
if(0==strcmp(argv[1], "train")) train_imagenet(); |
|
|
|
|
else if(0==strcmp(argv[1], "asirra")) train_asirra(); |
|
|
|
|
else if(0==strcmp(argv[1], "nist")) train_nist(); |
|
|
|
|
else if(0==strcmp(argv[1], "test_correct")) test_gpu_net(); |
|
|
|
|
else if(0==strcmp(argv[1], "test")) test_imagenet(); |
|
|
|
|
else if(0==strcmp(argv[1], "visualize")) test_visualize(argv[2]); |
|
|
|
|
else if(0==strcmp(argv[1], "valid")) validate_imagenet(argv[2]); |
|
|
|
|
#ifdef GPU |
|
|
|
|
else if(0==strcmp(argv[1], "test_gpu")) test_gpu_blas(); |
|
|
|
|
#endif |
|
|
|
|
test_parser(); |
|
|
|
|
fprintf(stderr, "Success!\n"); |
|
|
|
|
return 0; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
void visualize_imagenet_topk(char *filename) |
|
|
|
|
{ |
|
|
|
|
int i,j,k,l; |
|
|
|
@ -873,19 +848,6 @@ void visualize_imagenet_features(char *filename) |
|
|
|
|
} |
|
|
|
|
cvWaitKey(0); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void visualize_cat() |
|
|
|
|
{ |
|
|
|
|
network net = parse_network_cfg("cfg/voc_imagenet.cfg"); |
|
|
|
|
image im = load_image("data/cat.png", 0, 0); |
|
|
|
|
printf("Processing %dx%d image\n", im.h, im.w); |
|
|
|
|
resize_network(net, im.h, im.w, im.c); |
|
|
|
|
forward_network(net, im.data, 0, 0); |
|
|
|
|
|
|
|
|
|
visualize_network(net); |
|
|
|
|
cvWaitKey(0); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void features_VOC_image(char *image_file, char *image_dir, char *out_dir, int flip, int interval) |
|
|
|
|
{ |
|
|
|
|
int i,j; |
|
|
|
@ -992,57 +954,4 @@ void test_distribution() |
|
|
|
|
cvWaitKey(0); |
|
|
|
|
cvWaitKey(0); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void test_gpu_net() |
|
|
|
|
{ |
|
|
|
|
srand(222222); |
|
|
|
|
network net = parse_network_cfg("cfg/nist.cfg"); |
|
|
|
|
data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10); |
|
|
|
|
data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10); |
|
|
|
|
translate_data_rows(train, -144); |
|
|
|
|
translate_data_rows(test, -144); |
|
|
|
|
int count = 0; |
|
|
|
|
int iters = 1000/net.batch; |
|
|
|
|
while(++count <= 5){ |
|
|
|
|
clock_t start = clock(), end; |
|
|
|
|
float loss = train_network_sgd(net, train, iters); |
|
|
|
|
end = clock(); |
|
|
|
|
float test_acc = network_accuracy(net, test); |
|
|
|
|
printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay); |
|
|
|
|
} |
|
|
|
|
#ifdef GPU |
|
|
|
|
count = 0; |
|
|
|
|
srand(222222); |
|
|
|
|
net = parse_network_cfg("cfg/nist.cfg"); |
|
|
|
|
while(++count <= 5){ |
|
|
|
|
clock_t start = clock(), end; |
|
|
|
|
float loss = train_network_sgd_gpu(net, train, iters); |
|
|
|
|
end = clock(); |
|
|
|
|
float test_acc = network_accuracy(net, test); |
|
|
|
|
printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay); |
|
|
|
|
} |
|
|
|
|
#endif |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int main(int argc, char *argv[]) |
|
|
|
|
{ |
|
|
|
|
if(argc < 2){ |
|
|
|
|
fprintf(stderr, "usage: %s <function>\n", argv[0]); |
|
|
|
|
return 0; |
|
|
|
|
} |
|
|
|
|
if(0==strcmp(argv[1], "train")) train_imagenet(); |
|
|
|
|
else if(0==strcmp(argv[1], "asirra")) train_asirra(); |
|
|
|
|
else if(0==strcmp(argv[1], "nist")) train_nist(); |
|
|
|
|
else if(0==strcmp(argv[1], "train_small")) train_imagenet_small(); |
|
|
|
|
else if(0==strcmp(argv[1], "test_correct")) test_gpu_net(); |
|
|
|
|
else if(0==strcmp(argv[1], "test")) test_imagenet(); |
|
|
|
|
else if(0==strcmp(argv[1], "visualize")) test_visualize(argv[2]); |
|
|
|
|
else if(0==strcmp(argv[1], "valid")) validate_imagenet(argv[2]); |
|
|
|
|
#ifdef GPU |
|
|
|
|
else if(0==strcmp(argv[1], "test_gpu")) test_gpu_blas(); |
|
|
|
|
#endif |
|
|
|
|
test_parser(); |
|
|
|
|
fprintf(stderr, "Success!\n"); |
|
|
|
|
return 0; |
|
|
|
|
} |
|
|
|
|
*/ |
|
|
|
|