|
|
|
@ -76,7 +76,7 @@ deconvolutional_layer *parse_deconvolutional(list *options, network *net, int co |
|
|
|
|
int n = option_find_int(options, "filters",1); |
|
|
|
|
int size = option_find_int(options, "size",1); |
|
|
|
|
int stride = option_find_int(options, "stride",1); |
|
|
|
|
char *activation_s = option_find_str(options, "activation", "sigmoid"); |
|
|
|
|
char *activation_s = option_find_str(options, "activation", "logistic"); |
|
|
|
|
ACTIVATION activation = get_activation(activation_s); |
|
|
|
|
if(count == 0){ |
|
|
|
|
learning_rate = option_find_float(options, "learning_rate", .001); |
|
|
|
@ -120,7 +120,7 @@ convolutional_layer *parse_convolutional(list *options, network *net, int count) |
|
|
|
|
int size = option_find_int(options, "size",1); |
|
|
|
|
int stride = option_find_int(options, "stride",1); |
|
|
|
|
int pad = option_find_int(options, "pad",0); |
|
|
|
|
char *activation_s = option_find_str(options, "activation", "sigmoid"); |
|
|
|
|
char *activation_s = option_find_str(options, "activation", "logistic"); |
|
|
|
|
ACTIVATION activation = get_activation(activation_s); |
|
|
|
|
if(count == 0){ |
|
|
|
|
learning_rate = option_find_float(options, "learning_rate", .001); |
|
|
|
@ -161,7 +161,7 @@ connected_layer *parse_connected(list *options, network *net, int count) |
|
|
|
|
int input; |
|
|
|
|
float learning_rate, momentum, decay; |
|
|
|
|
int output = option_find_int(options, "output",1); |
|
|
|
|
char *activation_s = option_find_str(options, "activation", "sigmoid"); |
|
|
|
|
char *activation_s = option_find_str(options, "activation", "logistic"); |
|
|
|
|
ACTIVATION activation = get_activation(activation_s); |
|
|
|
|
if(count == 0){ |
|
|
|
|
input = option_find_int(options, "input",1); |
|
|
|
|